Issue |
MATEC Web Conf.
Volume 116, 2017
6th International Scientific Conference “Reliability and Durability of Railway Transport Engineering Structures and Buildings” (Transbud-2017)
|
|
---|---|---|
Article Number | 02007 | |
Number of page(s) | 8 | |
Section | Structures, Buildings and Facilities | |
DOI | https://doi.org/10.1051/matecconf/201711602007 | |
Published online | 10 July 2017 |
Experimental study of properties of heavy concrete with bottom ash from power stations
Poltava National Technical Yuri Kondratyuk University, Department of technology building designs, products and materials, Pershotravnevyi Avenue, 24, Poltava, 36011, Ukraine
* Corresponding author: lvbondar06@gmail.com
This article deals with the influence of cement quantity, plasticizing additives and compaction time on the strength and water consumption of concrete during its manufacturing using bottom ash from a thermal power station. The study was carried out using three factorial experiments. Variables varied on three levels. The obtained pattern functions characterize a relationship between strength, water consumption and variable factors. These factors include cement quantity, plasticize additives and compaction time. Compilation of Pareto effect charts allowed estimation of the significance of function indexes. Analysis of surface pattern function has revealed the optimal correlation between additive quantity and compaction time, cement quantity and additive quantity, cement quantity and compaction time. Compression strength of concrete was taken as the pattern in the pattern function. When analyzing the pattern function with water consumption as a pattern, optimal correlations between additive quantity and compaction time, cement quantity and additive quantity, cement quantity and compaction time were revealed. Application of STATISTICA 12 software has specified values of factors when the maximum strength is achieved. Correlations of components which have an impact on water consumption have been determined. The conclusions contain the quantitative findings of the study.
© The Authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.