Issue |
MATEC Web Conf.
Volume 109, 2017
2017 2nd International Conference on Materials Science and Nanotechnology (ICMSNT 2017) – 2017 2nd International Symposium on Material Science and Technology (ISMST 2017)
|
|
---|---|---|
Article Number | 02004 | |
Number of page(s) | 7 | |
Section | Chapter 2: Material/Mechanical Behaviours During Materials Processing | |
DOI | https://doi.org/10.1051/matecconf/201710902004 | |
Published online | 31 May 2017 |
Design and Optimization of Die Preforming Process for Long Last-stage Blade of Nuclear Power
1 Beijing Mechanical and Electrical Institute of Technology, Beijing, China
2 Tian Qian Heavy Industry Company, Ltd, Mianzhu, SiChuan, China
a Corresponding author: hexiaomaos@163.com
The long last-stage blade is a key component of the steam turbine of nuclear conventional island. The die preforming process for a new technology that provides billets for near-net-shape roll-forging process was designed, the effects of the forging temperature, friction coefficient, flash land’s height and die’s outer fillet radius on the die forging force and forging energy were studied by using the orthogonal experiment method, the primary and secondary order of the four factors were analysed by using range analysis method, and the optimal combination of the factors was obtained. By means of numerical simulation and physical experiment, the die preforming process that can provide qualified billets for the subsequent roll-forging process was verified, and the PZS1120f electric screw press can meet the requirements of the die preforming process.
© The Authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.