Issue |
MATEC Web Conf.
Volume 108, 2017
2017 International Conference on Mechanical, Aeronautical and Automotive Engineering (ICMAA 2017)
|
|
---|---|---|
Article Number | 04005 | |
Number of page(s) | 5 | |
Section | Mechanical Engineering | |
DOI | https://doi.org/10.1051/matecconf/201710804005 | |
Published online | 31 May 2017 |
Model and Simulation of Globoidal Cam Mechanisms with Oscillating and Dual Stopping Followers
University of Jinan, School of Mechanical Engineering, 250021 Jinan, China
Globoidal cam mechanisms with oscillating and dual stopping followers are necessary to accomplish the rise-dwell-fall-dwell periodic motion.The trajectory surface of roller axis of oscillating globoidal cam mechanism is the offset surface of working surface of the cam, and its mathematical model is relatively simple. According to the spatial geometric relationship, the coordinate equation of trajectory surface of roller axis is derived and the original angle positions for dual stopping followers are analyzed. As a result, the three-dimension (3D) model of globoidal cam mechanism with oscillating and dual stopping followers is generated based on the offset surface method based on the UG software. Finally, the dynamic model is realized using Adams software, and through the dynamic simulation, the oscillating angle displacement, angular velocity and angular acceleration of the double-stop swinging cam mechanism are studied. According to the simulation results, it can be concluded that the input speed of globoidal cam mechanism is an important factor that affects the output performance of the mechanism. Through the above research, it can provide some reference for the design of spatial cam mechanism.
© The Authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.