Issue |
MATEC Web Conf.
Volume 100, 2017
13th Global Congress on Manufacturing and Management (GCMM 2016)
|
|
---|---|---|
Article Number | 05009 | |
Number of page(s) | 6 | |
Section | Part 5: Management Engineering | |
DOI | https://doi.org/10.1051/matecconf/201710005009 | |
Published online | 08 March 2017 |
The Integrated Design for Micro - environment Monitoring System of Showcase in Museum
1 Department of Instrument Intelligent Manufacturing Technology, Hefei University of Technology, Hefei, China
2 Department of Instrument Science and electronic engineering, Hefei University of Technology, Hefei, China
* Corresponding Email: zhanghui@hfut.edu.cn
In order to improve the current environment quality of cultural relics in museum and make them preserved for a long time, the paper proposes the integrated design for micro - environment monitoring system of showcase in museum, the system mainly monitors the micro-environment of heritage, such as ultraviolet, light, formaldehyde, CO2, TVOC, PM 2.5, choosing cotex-M3 ARM microcontroller STM32F103ZET6 as the control core. Based on the concept of integration, the system integrates the single air monitoring instruments. The design of circuit mainly includes the process of digital power supply and analog power supply, the acquisition and processing of 5 analog signals from sensors, and the design of reserved interface. In the aspect of interaction, the serial port lcd module was uesd for the display and control, which can get rid of the control of PC and achieve the functions of environmental monitoring, environmental warning, environmental assessment, historical data query. The integrated design for Micro-environment of Showcase in Museum achieves a monitoring platform successfully which is easy for users’ operation and access to display information conveniently. The advantages of the system are strong portability, low cost and short development cycle.
Key words: STM32 / micro-environmental monitoring / museum showcase / human-computer interaction
© The Authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.