Issue |
MATEC Web Conf.
Volume 97, 2017
Engineering Technology International Conference 2016 (ETIC 2016)
|
|
---|---|---|
Article Number | 01033 | |
Number of page(s) | 7 | |
DOI | https://doi.org/10.1051/matecconf/20179701033 | |
Published online | 01 February 2017 |
Improving of Water Resistance of Asphalt Concrete Wearing Course Using Latex-Bitumen Binder
1 The Department of Civil Engineering, The Faculty of Engineering, Universitas Negeri Malang, Jl. Semarang 5 Malang, Indonesia
2 Konsorsium Riset Geopolimer Indonesia (KORIGI), Lab Beton dan Bahan Bangunan ITS, Surabaya, Indonesia
* Corresponding author: henri.siswanto.ft@um.ac.id
It is well known that presence of water in a bituminous mix is a critical factor which can lead to premature failure of flexible pavements. This requires solutions one of which is to formulate an asphalt mix that has a high resistance to moisture and one way to do this is to mix latex with the asphalt mix. The purpose of this experimental study was to investigate the effect of water on Marshall stability of asphalt concrete wearing course (ACWC) made with a latex-bitumen binder. Latex-bitumen was mixed with aggregate and four levels of latex content were investigated in this study, namely, 0%, 2%, 4% and 6% respectively by weight of asphalt. Wet procces was used in the blending of mixtures. The procedure used to obtain the optimum binder contents conformed to the Marshall procedure (SNI 06-2489-1991). Six Marshall specimens at optimum binder content were prepared for each binder mix investigated. Three of six specimens from each group were tested under Marshall standards. The remaining specimens were tested by immersion in a bath at 60°C for 24 hours. The Marshall index of retained stability was used to evaluate the effect of water on the Marshall stability of ACWC. The results indicated that the addition of up to 4% latex to ACWC mix increased the retained Marshall stability, whereas the addition of latex above 4% decreased the retained stability of the mixture. The addition of 4% CRM significantly improved the retained stability of the mixture and was the best latex – ACWC mix.
© The Authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.