Issue |
MATEC Web Conf.
Volume 95, 2017
2016 the 3rd International Conference on Mechatronics and Mechanical Engineering (ICMME 2016)
|
|
---|---|---|
Article Number | 02003 | |
Number of page(s) | 4 | |
Section | Material Structure and Measurement | |
DOI | https://doi.org/10.1051/matecconf/20179502003 | |
Published online | 09 February 2017 |
Simulation and Experiment on In-plane Carbon Nanotube Thermoelectric Generator in Parallel
Center of Nanoscience and Technology, Institute of Mechanical Technology, Shijiazhuang, Hebei, 050003, China
In order to solve the problem of larger internal resistance of thin-film thermoelectric generator (TEG) in series, which could influence the output power and restrict the application, the in-plane carbon nanotube (CNT) TEG in parallel was ingeniously researched. Utilizing the parameters of output power, conversion and energy efficiencies, the ideal and actual models of TEG in parallel were established, respectively. The thermal conduction insulating layer was taken into account, which could provide the theoretical guidance for the experimental test and engineering applications. The CNT films were prepared by the floating-catalyst chemical vapor deposition (CVD), and the experiment and properties of TEG based on CNT films were investigated. The testing circuits of conventional and gas TEGs were designed, and the output powers of the serial and parallel connecting types were tested and compared. The correctness of theoretical model and numerical analysis was proved to be valid. The novel method could effectively enhance the output power, extend the applied range of TEG in MEMS/NEMS and had a fine prospect.
© The Authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.