Issue |
MATEC Web Conf.
Volume 90, 2017
The 2nd International Conference on Automotive Innovation and Green Vehicle (AiGEV 2016)
|
|
---|---|---|
Article Number | 01077 | |
Number of page(s) | 11 | |
DOI | https://doi.org/10.1051/matecconf/20179001077 | |
Published online | 20 December 2016 |
Omnidirectional configuration and control approach on mini heavy loaded forklift autonomous guided vehicle
1 Robotics and Unmanned Systems (RUS) research group, Faculty of Electrical and Electronics Engineering, Universiti Malaysia Pahang, 26600 Pekan, Pahang, Malaysia
2 Manufacturing Focus Group (MFG), Faculty of Mechanical Engineering, Universiti Malaysia Pahang, 26600 Pekan, Pahang, Malaysia
3 Vacuumschmelze (M) Sdn. Bhd, Lot 3465, Tanah Putih, 26600 Pekan, Pahang, Malaysia
* Corresponding author: sharimie.adam@gmail.com
This paper presents the omnidirectional configuration and control approach on Mini Heavy Loaded Forklift Autonomous Guided Vehicle (MHeLFAGV) for flexibility maneuverability in confine and narrow area. The issue in turning motion for nonholonomic vehicle in confine area becoming a motivation in MHeLFAGV design to provide holonomic vehicle with flexible movement. Therefore an omni-wheeled named Mecanum wheel has been configured in this vehicle design as well as omnidirectional control algorithm. MHeLFAGV system is developed with collaboration and inspired from Vacuumshmelze (M) Sdn. Bhd. Pekan, Pahang in order to have a customized mini forklift that able to work in a very confined warehouse (170cm × 270cm square) with heavy payload in a range of 20-200kg. In electronics control design, two stages of controller boards are developed namely as Board 1 and 2 that specifically for movement controller board and monitoring controller board respectively. In addition separate module of left, right, forward, backward, diagonal and zigzagging movement is developed as embedded modules for MHeLFAGV system’s control architecture. A few experiments are done to verify the algorithm for each omnidirectional movement of MHeLFAGV system in the wide area. The waypoint of MHeLFAGV movement is plotted using Global Positioning System (GPS) as well as a digital compass by mapping the longitude and latitude of the vehicle. There are slightly different between the targeted movements with recorded data since Mecanum wheeled affected by the uneven surface of the landscape. The experiment is also further on moving in confine are on the actual targeted warehouse.
© The Authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.