Issue |
MATEC Web Conf.
Volume 90, 2017
The 2nd International Conference on Automotive Innovation and Green Vehicle (AiGEV 2016)
|
|
---|---|---|
Article Number | 01069 | |
Number of page(s) | 9 | |
DOI | https://doi.org/10.1051/matecconf/20179001069 | |
Published online | 20 December 2016 |
Autonomous mobile robot localization using Kalman filter
Faculty of Manufacturing Engineering, Universiti Malaysia Pahang, 26600 Pekan, Pahang, Malaysia
* Corresponding author: maizzat@ump.edu.my
Autonomous mobile robot field has gain interest among researchers in recent years. The ability of a mobile robot to locate its current position and surrounding environment is the fundamental in order for it to operate autonomously, which commonly known as localization. Localization of mobile robot are commonly affected by the inaccuracy of the sensors. These inaccuracies are caused by various factors which includes internal interferences of the sensor and external environment noises. In order to overcome these noises, a filtering method is required in order to improve the mobile robot’s localization. In this research, a 2- wheeled-drive (2WD) mobile robot will be used as platform. The odometers, inertial measurement unit (IMU), and ultrasonic sensors are used for data collection. Data collected is processed using Kalman filter to predict and correct the error from these sensors reading. The differential drive model and measurement model which estimates the environmental noises and predict a correction are used in this research. Based on the simulation and experimental results, the x, y and heading was corrected by converging the error to10 mm, 10 mm and 0.06 rad respectively.
© The Authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.