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Abstract. In studies associated with the defect in rolling element bearing, 
signal clustering are one of the popular approach taken in attempt to 
identify the type of defect. However, the noise interruption are one of the 
major issues which affect the degree of effectiveness of the applied 
clustering method. In this paper, the application of principle component 
analysis (PCA) as a pre-processing method for hierarchical clustering 
analysis on the frequency spectrum of the vibration signal was proposed. 
To achieve the aim, the vibration signal was acquired from the operating 
bearings with different condition and speed. In the next stage, the principle 
component analysis was applied to the frequency spectrums of the acquired 
signals for pattern recognition purpose. Meanwhile the mahalanobis 
distance model was used to cluster the result from PCA.  According to the 
results, it was found that the change in amplitude at the respective 
fundamental frequencies can be detected as a result from the application of 
PCA. Meanwhile, the application of mahalanobis distance was found to be 
suitable for clustering the results from principle component analysis. 
Uniquely, it was discovered that the spectrums from healthy and inner race 
defect bearing can be clearly distinguished from each other even though 
the change in amplitude pattern for inner race defect frequency spectrum 
was too small compared to the healthy one. In this work, it was 
demonstrated that the use of principle component analysis could 
sensitively detect the change in the pattern of the frequency spectrums. 
Likewise, the implementation of mahalanobis distance model for clustering 
purpose was found to be significant for bearing defect identification.  

1 Introduction  
In any rotating machineries, rolling element bearing is important in which it is functioning 
as both thrust and radial load bearer. Without bearing, the rotating shaft will be exposed to 
an excessive vibration which later on led to the fatigue damage. Basically, an abrupt 
bearing failure will precipitate massive impact to the maintenance and operational cost. 
Therefore, it is greatly essential to make sure that the bearing is consistently in pristine 
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condition while it is operating. Besides, early bearing fault detection is vital in order to 
prevent the failure as well as reduced the loss. 

In industries, various technique can be applied for the purpose of bearing condition 
monitoring, and one of the common technique is vibration analysis [1, 2]. In simple cases, 
the vibration behavior of rolling element bearing can be analytically predicted. However, in 
more compounded system, vibration produced by rolling element bearing can be complex 
as a result from geometrical imperfection during manufacturing process, component 
instability as well as defect itself [3]. Apart from that, the other excitation frequency from 
other component or other unidentified sources might also affecting the vibration behavior. 
Consequently, the vibration signal produced are random and it is difficult to detect the 
damage-related component. Since the past several decades, the feature extraction analysis 
and classification technique was widely used as an approach in attempt to address on this 
issue. In general, the major aims of feature extraction analysis is to extract the hidden signal 
features among the complex signal that could lead to the detection of damage occurrence in 
the system that was monitored. Basically, on one hand, the feature was extracted directly 
from the acquired signal by determining its statistical parameter [4-7] and fundamental 
frequencies [3, 8] parameters. Meanwhile, on the other hand, the decomposition method 
such as wavelet analysis [9-12], and empirical mode decomposition [13-15] was applied 
before the feature is determined. The idea of decomposing the signal is to filter out all the 
non-related signal component which was initiated from both unidentified and unrelated 
sources during bearing operation.  

In industrial application, it is important to identify the damage in order to assess it’s 

fitness for service. This is vital for the purpose of maintenance planning and that is the main 
reason why online monitoring system is needed at the first place. Basically, for damage 
identification purpose, several classification technique have been applied to the extracted 
features. This includes, Discriminative Subspace Learning [16], Hierarchical Diagnosis 
Network [17], Support Vector Machine [18, 19], Extreme Learning Machine [20], and 
artifial neural network [21].  Despite the wide exploration on the feature extraction and 
classification techniques, the unavoidable problems such as low signal-to-noise ratio due to 
the nonlinearity of the signal still becomes a major challenge even though wide variation of 
feature extraction approach was taken to overcome these problems.  

In this paper, the application of principle component analysis (PCA) as a pre-
processing method for hierarchical clustering analysis on the frequency spectrum of the 
vibration signal was proposed. In common approach, PCA was implies to reduce the 
dimension of the complex signal before the features associated with the presence of defect 
was detected [22]. However, in this work, PCA was applied to identify the change in 
frequency spectrum pattern due to the basis that the amplitude of fundamental frequency 
will changed with the existence of defect. In this study, the vibration signal was acquired 
from the operating bearings with different condition and speed. In the beginning part, the 
response of vibration amplitude at the respective fundamental frequencies with the 
occurrence of damage will be discussed. On the next stage, the application of principle 
component analysis as feature extraction method and hierarchical clustering as damage 
identification analysis will be demonstrated.

2 Methodology  

2.1 Experimental setup 

The test rig for this experiment was designed to investigate failure and vibration 

characteristic of ball bearings. As illustrated in Figure 1, in this experiment, the shaft was 
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driven by a variable-speed 0.37kW, 50Hz electric motor equipped with a controller in order 

to control the speed of the motor. A flywheel is installed at the middle of the spindle in 

order to apply load to the shaft and at the same time minimizing the speed oscillations of 

the shaft.  A spring coupling was used to connect the motor and shaft to minimize shaft 

alignment error. The front side of the shaft (near to the motor) is fitted with tested bearing 

and the vibration response will be measured here while on the other side, a good bearing 

was fitted.  In this study, a set of good bearings and another three bearings with different 

type of defect such as corroded, point defect and outer race defect were tested. The angular 

speed is set to 10%, 50% and 90% of the maximum motor speed, and shortly after the test 

commenced, the time response of vibration were acquired by using the Bruel & Kjær 

(B&K) 4506B accelerometer. The time series of vibration (acceleration) response was 

acquired with the sampling frequency of 20 kHz (Δt = 0.039 ms).  

 

Fig. 1. Experiment setup.

2.2 Frequency spectrum clustering 

In this work, 16 signals from healthy, corroded and outer race defect was selected for 

clustering analysis together with 12 signals from point defect bearing. Before starts the 

clustering process, the acquired time domain response from different types of bearings was 

converted into frequency spectrum through the Fast Fourier Transform (FFT) analysis. 

Direct observation on peak pattern at the respective fundamental frequency were made to 

identify the damage. Basically the fundamental frequencies were calculated based on the 

equation from [3].  Even though the fundamental frequency could be observed, it is 

important to reveal the different in structure of all the collected frequency spectrums from 

different bearing conditions because in some cases, the change in pattern is too small to be 

observed. To achieve the aims, the principle component analysis was applied. Basically, the 

principle component analysis implies the eigenvalue decomposition on the covariance 

matrix of the multiple dataset. In this work, one frequency spectrum was considered as one 

dataset contained n number of samples. Moreover, all the dataset was normalized by its 

mean value before the covariance matrix was attained. In general, the PCA process could 

be represent in matrix operation as shown by [23] in equation 1 to 3 whereas in equation 3, � and �⃗ are the eigenvalue and eigenvector (principle component) respectively 

 

[�] = � ��� ⋯ ��
⋮ ⋱ ⋮�
� ⋯ �


�     (1) 

No Part/Component
a Spring coupling
b Tested bearing
c Flywheel
d Supporting bearing
e Accelerometer
f DAQ
g Analyzer
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[��] = [�]. [�]�      (2) 

[��]. �⃗ =  �. �⃗      (3) 

 

Basically, the result from PCA will be represented in scatter plot to show how the 

numerous dataset scattered based on its pattern. To classify this numerous dataset, the 

hierarchical clustering approach was taken in which the distance between dataset will be 

measured prior to clustering process. In this work, the mahalanobis model as shown in 

equation 4 [24] was selected for a distance measurement due to the nature of principle 

components which will scattered in oval shapes when the datasets is strongly related [25]. 

 �
�����
����(�, �) =  �(� − �)���(� − �)� (4)

3 Results and discussion  

3.1 Frequency spectrums  

In this paper, due to the same result’s pattern for all rotational speed, only the result from 

the test with rational speed of 287 rpm was presented. As explained earlier, the time series 

of the vibration signal acquired from the rolling element bearings with different condition is 

converted into frequency domain signal and these signal were illustrated in Figure 2. 

Meanwhile its theoretical fundamental frequency was shown in Table 1. Based from the 

Figure 2, it was clear that the ball spin frequency, BSF, and the ball passing frequency outer 

race, BPFO are obviously appear in frequency spectrum of healthy as well as defect 

bearings. In contrast, the ball pass frequency inner race, BPFI are barely unseen in the 

frequency spectrums of the corroded bearings in which the opposite trend had been shown 

in the frequency spectrums of other types of bearing.  

 From the deeper observation, it was found that high amplitude of acceleration occur at 

BPFO for outer race defect bearing. In conjunction with that, among all the frequency 

spectrums from healthy and defects bearings, the amplitude of acceleration was higher at 

BPFI for point defect bearing. Based from this results, it was confirmed that the presence of 

specific defect will increase the amplitude of vibration at the specific fundamental 

frequencies. Previous findings [8] also have proven these phenomena accordingly. In 

contrast, the spectrums of corroded bearings shows high amplitude values for all 

fundamental frequencies. This is probably due to the uniform behavior of the defect itself.  

 
Table 1. Fundamental Frequency of Rolling Element Bearing which rotates at 287 rpm. 

 

Fundamental Frequency Value (Hz) 
Ball Passing Frequency Outer Race, BPFO 13.65 

Ball Passing Frequency Inner Race, BPFI 24.58 

Fundamental Train Frequency, FTF 1.707 

Ball Spin Frequency, BSF 1.67 
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Fig. 2. Frequency spectrum for bearings that rotates 287 rpm. 

3.2 Frequency signal classification 

As discussed in the previous section, it is clear that the frequency spectrum from each of the 

bearing condition showed a significant different in its structure. To represent cluster all of 

these spectrums, the principle component analysis was applied to a set of frequency 

spectrums which consists of healthy, point defect, outer race defect and corroded bearings 

and the results was shown in Fig. 3. Fig. 3(a) illustrates the overall scatter plot of principle 

component 1 and principle component 2 while Fig. 3(b) shows the zoomed part. According 

to the result in both sub-figures, it was found that the principle components (PC) of 

frequency spectrums was scattered into four different groups. However, the scattered data 

form a group or population in ellipsoidal shape. This scatter trend occurs due to the 

similarities in the patterns of the tested dataset [26]. In other words, it is strongly believed 

that each ellipsoidal-shape scattered dataset is belonging to the same group of bearing 

types. 

 

       
(a)          (b) 

Fig. 3. Classification of frequency spectrum from different bearing condition using principle 
component analysis (a) Overall (b) Zoomed part 
 

 

 To confirm the claims, clustering process in needed in which for this process, the 

mahalanobis distance had been calculated in order to cluster the PCs from different type of 

BPFO

BSF

BPFO

BPFI
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bearings. The clustering result was shown in dendrogram plot in Fig 4. According to the 

figures, based on mahalanobis distance, it was clear that the data have been regrouped in 

four major cluster. Yet, the dataset 49 and 54 was identified to be outliers. Table 2 was 

shown to simplify the representation of the dendrogram. As referred to the table, those 

dataset which belongs to corroded, outer race defect, healthy and point defect was 

registered to be in cluster 1, 2, 3, and 4 respectively. Meanwhile, two dataset which belongs 

to corroded bearing was found to be as outliers. 

 

Fig. 4. Dendrogram plot of principle component 1 and 2. 
 

Table 2. Clustering result. 

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Outliers 
Signal 
No 

Bearing 
Type 

Signal 
No Bearing Type Signal 

No 
Bearing 
Type 

Signal 
No 

Bearing 
Type 

Signal 
No 

Bearing 
Type 

56 Corroded 20 Outer Race Defect 7 Healthy 43 Point Defect 54 Corroded 

51 Corroded 29 Outer Race Defect 11 Healthy 40 Point Defect 49 Corroded 

59 Corroded 32 Outer Race Defect 10 Healthy 39 Point Defect 
  

50 Corroded 30 Outer Race Defect 14 Healthy 35 Point Defect 
  

47 Corroded 31 Outer Race Defect 12 Healthy 41 Point Defect 
  

52 Corroded 28 Outer Race Defect 8 Healthy 34 Point Defect 
  

55 Corroded 25 Outer Race Defect 5 Healthy 44 Point Defect 
  

48 Corroded 26 Outer Race Defect 2 Healthy 38 Point Defect 
  

46 Corroded 22 Outer Race Defect 9 Healthy 37 Point Defect 
  

60 Corroded 23 Outer Race Defect 4 Healthy 42 Point Defect 
  

58 Corroded 21 Outer Race Defect 3 Healthy 36 Point Defect 
  

57 Corroded 19 Outer Race Defect 15 Healthy 33 Point Defect 
  

53 Corroded 18 Outer Race Defect 16 Healthy 
    

45 Corroded 24 Outer Race Defect 13 Healthy 
    

  
27 Outer Race Defect 6 Healthy 

    

    17 Outer Race Defect 1 Healthy         

Cluster 3

Cluster 4

Cluster 1

Cluster 2
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Fig. 5. Principle Components scatter plot with cluster group. 

4 Conclusions 
According to the results, it was found that the amplitude of vibration at Ball Passing 

Frequency Outer Race and Ball Passing Frequency Inner Race will increase in align with 

the presence of outer race defect and inner race defect respectively. Moreover, the overall 

amplitude of vibration spectrum was found to be uniformly increased for the case of 

corroded bearing due to the widespread uniform corrosion on the entire bearing. By 

applying principle component analysis, the change in amplitude at any of these fundamental 

frequencies can be detected. Meanwhile, the application of mahalanobis distance was found 

to be suitable for clustering the results from principle component analysis. Uniquely, it was 

discovered that the spectrums from healthy and inner race defect bearing can be clearly 

distinguished from each other even though the change in amplitude pattern for inner race 

defect frequency spectrum was too small compared to the healthy one. To draw the 

conclusion, it was demonstrated that the use of principle component analysis could 

sensitively detect the change in the pattern of the frequency spectrums. This was believe to 

give more option to detect the damage from the change in signal pattern apart from 

decomposing it. Likewise, the implementation of mahalanobis distance model for clustering 

purpose was found to be significant for bearing defect identification. 
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