Issue |
MATEC Web Conf.
Volume 82, 2016
2016 International Conference on Design, Mechanical and Material Engineering (D2ME 2016)
|
|
---|---|---|
Article Number | 02001 | |
Number of page(s) | 10 | |
Section | Chapter 2: Materials Engineering | |
DOI | https://doi.org/10.1051/matecconf/20168202001 | |
Published online | 31 October 2016 |
Combined Ultrasonic Elliptical Vibration and Chemical Mechanical Polishing of Monocrystalline Silicon
College of Mechanical and Electrical Engineering, Central South University, Changsha, Hunan province, 410083, China
a Corresponding author: liudefu@csu.edu.cn
An ultrasonic elliptical vibration assisted chemical mechanical polishing(UEV-CMP) is employed to achieve high material removal rate and high surface quality in the finishing of hard and brittle materials such as monocrystalline silicon, which combines the functions of conventional CMP and ultrasonic machining. In theultrasonic elliptical vibration aided chemical mechanical polishingexperimental setup developed by ourselves, the workpiece attached at the end of horn can vibrate simultaneously in both horizontal and vertical directions. Polishing experiments are carried out involving monocrystalline silicon to confirm the performance of the proposed UEV-CMP. The experimental results reveal that the ultrasonic elliptical vibration can increase significantly the material removal rate and reduce dramatically the surface roughness of monocrystalline silicon. It is found that the removal rate of monocrystalline silicon polished by UEV-CMP is increased by approximately 110% relative to that of conventional CMP because a passive layer on the monocrystalline silicon surface, formed by the chemical action of the polishing slurry, will be removed not only by the mechanical action of CMP but also by ultrasonic vibration action. It indicates that the high efficiency and high quality CMP of monocrystalline silicon can be performed with the proposed UEV-CMP technique.
© The Authors, published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.