Issue |
MATEC Web Conf.
Volume 80, 2016
NUMIFORM 2016: The 12th International Conference on Numerical Methods in Industrial Forming Processes
|
|
---|---|---|
Article Number | 15007 | |
Number of page(s) | 8 | |
Section | Topic 3: Application to metal or multi-metal forming processes | |
DOI | https://doi.org/10.1051/matecconf/20168015007 | |
Published online | 24 October 2016 |
Biomedical Titanium alloy prostheses manufacturing by means of Superplastic and Incremental Forming processes
1 Politecnico di Bari, Department of Mechanics, Mathematics and Management, viale Japigia 182, 70126, Bari, Italy
2 Università della Calabria, Dipartimento di Meccanica Energia e Gestionale, via Pietro Bucci, 87036, Rende (CS), Italy
a Corresponding author: gianfranco.palumbo@poliba.it
The present work collects some results of the three-years Research Program “BioForming“, funded by the Italian Ministry of Education (MIUR) and aimed to investigate the possibility of using flexible sheet forming processes, i.e. Super Plastic Forming (SPF) and Single Point Incremental Forming (SPIF), for the manufacturing of patient-oriented titanium prostheses. The prosthetic implants used as case studies were from the skull; in particular, two different Ti alloys and geometries were considered: one to be produced in Ti-Gr23 by SPF and one to be produced in Ti-Gr2 by SPIF. Numerical simulations implementing material behaviours evaluated by characterization tests were conducted in order to design both the manufacturing processes. Subsequently, experimental tests were carried out implementing numerical results in terms of: (i) gas pressure profile able to determine a constant (and optimal) strain rate during the SPF process; (ii) tool path able to avoid rupture during the SPIF process. Post forming characteristics of the prostheses in terms of thickness distributions were measured and compared to data from simulations for validation purposes. A good correlation between numerical and experimental thickness distributions has been obtained; in addition, the possibility of successfully adopting both the SPF and the SPIF processes for the manufacturing of prostheses has been demonstrated.
© The Authors, published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.