Issue |
MATEC Web Conf.
Volume 63, 2016
2016 International Conference on Mechatronics, Manufacturing and Materials Engineering (MMME 2016)
|
|
---|---|---|
Article Number | 05033 | |
Number of page(s) | 5 | |
Section | Computer Engineering and Applications | |
DOI | https://doi.org/10.1051/matecconf/20166305033 | |
Published online | 12 July 2016 |
Study on the Curvature Reducing Method of Non-linear Regression Model
China Satellite Maritime Tracking and Controlling Department, Jiangyin 214413, Jiangsu, China
The method to reduce the non-linear strength (curvature)of non-linear regression model was studied in this paper. Firstly, the reference point of the non-linear strength was analyzed. Based on the definition of curvature cubic matrix, a computing method of curvature cubic matrix was proposed based on the Cholesky disassembling. Then the common ways to reduce the non-linear strength was also discussed. Pointed at some common non-linear models in real engineering applications, such as non-linear models used for multiple-measurement and mutual-calibration of different instruments, or non-linear models prior information, a new least square method with weight was given, which can evidently reduce the curvature of these multi-structure non-linear regression models, therefore evidently reduce the non-linear strength. Finally, the Numerical simulation results were given to validate the effectiveness and feasibility of this weighted least square method. The method to reduce the non-linear strength (curvature) of non-linear regression model was studied in this paper. Firstly, the reference point of the non-linear strength was analyzed. Based on the definition of curvature cubic matrix, a computing method of curvature cubic matrix was proposed based on the Cholesky disassembling. Then the common ways to reduce the non-linear strength was also discussed. Pointed at some common non-linear models in real engineering applications, such as non-linear models used for multiple-measurement and mutual-calibration of different instruments, or non-linear models with prior informations, a new least square method with weight was given, which can evidently reduce the curvature of these multi-structure non-linear regression models, therefore evidently reduce the non-linear strength. Finally, the Numerical simulation results ware given to validated the effectiveness and feasibility of this weighted least square method.
Key words: Non-linear regression / curvature / cholesky disassembling / least square with weight
© Owned by the authors, published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.