Issue |
MATEC Web of Conferences
Volume 31, 2015
2015 7th International Conference on Mechanical and Electronics Engineering (ICMEE 2015)
|
|
---|---|---|
Article Number | 04001 | |
Number of page(s) | 6 | |
Section | Applied mechanics | |
DOI | https://doi.org/10.1051/matecconf/20153104001 | |
Published online | 23 November 2015 |
The Analysis of Fluid Pressure Impact on String Force and Deformation in Oil and Gas Wells
Department of Petroleum Engineering, China University of Petroleum, Beijing, Beijing, China
a Ren Jingwei: rjw318318@126.com
Fluid pressure is a crucial factor to tubular string strength and deformation in oil and gas wells, and it is the most difficult factor to deal with. When the string constrained by downhole tools, such as packers, action pattern of fluid on string is changed. Calculation methods of string stress and deformation given by engineering handbooks doesn’t distinguish these issues in detail. So mistakes are often made when these methods are used. Tangled concepts lead to large calculation error. In this paper, the influence of fluid pressure on string axial force and deformation, buoyancy treatment in packed condition, are discussed roundly both in vertical wells and directional wells. Practical calculating method of string axial force through the hook load is presented, and element buoyancy in different borehole trajectory is given. It is found that the traditional simplified buoyancy coefficient method, which is used to calculate string axial force and axial extension, can only be used in vertical wells with tubular string suspended freely, because in this condition buoyancy acts on the bottom of string. If the string is constrained by downhole tools, such as packer or anchor, buoyancy could not be treated as usual. In directional well the buoyancy not only changes string axial force but induces shear stress in string cross section. When calculating the influence of fluid on string, operation sequence and constraints from borehole and downhole tools should be considered comprehensively.
© Owned by the authors, published by EDP Sciences, 2015
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.