Issue |
MATEC Web of Conferences
Volume 25, 2015
2015 International Conference on Energy, Materials and Manufacturing Engineering (EMME 2015)
|
|
---|---|---|
Article Number | 04007 | |
Number of page(s) | 6 | |
Section | Civil Engineering | |
DOI | https://doi.org/10.1051/matecconf/20152504007 | |
Published online | 06 October 2015 |
A Study on the Fracture Control of Rock Bolts in High Ground Pressure Roadways of Deep Mines
1 College of Civil and Environmental Engineering, University Of Science & Technology Beijing, Beijing, China
2 School of Safety Engineering, North China Institute of Science and Technology, Beijing, China
3 Institute of Mine Safety Technology, China Academy of Safety Science and Technology, Beijing, China
4 CCTEG Xi’an Research Institute, Xi’an, Shaanxi, China
According to the frequent fractures of rock bolts in high ground pressure roadways of deep mines, this paper analyzes the mechanism of fractures and concludes that high ground pressure and material de-fects are main reasons for the fracture of rock bolts. The basic idea of fracture control of rock bolts in high ground pressure roadways of deep mines is to increase the yield load and the limit load of rock bolt materials and reduce the actual load of rock bolts. There are four ways of controlling rock bolt fracture: increasing the rock bolt diameter, strengthening bolt materials, weakening support rigidity and the implementation of double supporting. With the roadway support of the 2302 working face of a coal mine as the project background, this paper carries out a study on the effect of two schemes, increasing the rock bolt diameter and the double supporting technique through methods of theoretical analysis, numerical simulation and so on. It determines the most reasonable diam-eter of rock bolts and the best delay distance of secondary support. Practices indicate that rock bolt fracture can be effectively controlled through the double supporting technique, which strengthens the roof and two sides through the first supporting technique and strengthens side angles through the secondary supporting technique.
Key words: deep mine / high ground pressure roadway / rock bolting / fracture control
© Owned by the authors, published by EDP Sciences, 2015
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.