Issue |
MATEC Web of Conferences
Volume 21, 2015
4th International Conference on New Forming Technology (ICNFT 2015)
|
|
---|---|---|
Article Number | 10003 | |
Number of page(s) | 7 | |
Section | Powder Sintering | |
DOI | https://doi.org/10.1051/matecconf/20152110003 | |
Published online | 10 August 2015 |
Fabrication of NiTi shape memory alloy by Micro-FAST
Centre for Micro-Manufacturing, Dept. of DMEM, University of Strathclyde, James Weir Building, 75 Montrose Street, Glasgow G1 1XQ, UK
a Corresponding author: e-mail: qin.yi@strath.ac.uk
A NiTi shape memory alloy, known as nitinol, has been intensively studied for last five decades. The NiTi alloy with large size is commonly produced by vacuum sintering, thermal explosion mode of self-propagating high-temperature synthesis (TE-SHS) and spark plasma sintering (SPS). These methods are, however, rarely utilized for the forming of miniature and micro-sized components and have their own limits and disadvantages, such as long process chains and low efficiency with the processes. In the study reported in this paper, an innovation in rapid powder consolidation technology, called Micro-FAST (combining micro-forming and electric-current activated sintering techniques (FAST)) is introduced for the forming of micro-components in which the loose powders are loaded directly into the die, followed by electric-sintering. In the study, Φ4.0 mm × 4.0 mm miniature cylinders were formed with pre-alloyed NiTi powders. Sintered sample with relative density of 98.65% has been fabricated at a sintering temperature of 1150 °C in a relatively short cycle time (119.5 s). Based on the results of SEM and XRD, it was found that the densified samples with Ni3Ti, NiTi and NiTi2 phases were produced.
© Owned by the authors, published by EDP Sciences, 2015
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.