Issue |
MATEC Web of Conferences
Volume 21, 2015
4th International Conference on New Forming Technology (ICNFT 2015)
|
|
---|---|---|
Article Number | 05013 | |
Number of page(s) | 7 | |
Section | Hot Stamping | |
DOI | https://doi.org/10.1051/matecconf/20152105013 | |
Published online | 10 August 2015 |
Analysis of new Gleeble tensile specimen design for hot stamping application
1 Mechanics of Materials, Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, UK
2 Research & Development, Tata Steel, IJmuiden, The Netherlands
a Corresponding author: n.li09@imperial.ac.uk
Hot tensile testing is useful to understand the material behavior at elevated temperatures. Hence it is of utmost importance that the test condition is accurate enough to derive stress-strain data in fully austenitic state and to ensure homogeneous deformation throughout the gauge length of the specimen. But present limitation of standard Gleeble hot tensile sample geometry could not be used to achieve a uniform temperature distribution along the gauge section, thus creating errors of experimental data. In order to understand the effect of sample geometry on temperature gradient within the gauge section coupled electrical-thermal and thermo-mechanical finite element analysis has been carried out using Abaqus, with the use of viscoplastic damage constitutive equations presented by Li [1]. Based on the experimental study and numerical analysis, it was observed that the new sample geometry introduced by Abspoel [2], is able to achieve a better uniformity in temperature distribution along the gauge length; The temperature deviation along the gauge length within 25 ∘C during soaking and 5 ∘C after cooling and onset of deformation); also the strain deformation is found to be almost homogeneous.
© Owned by the authors, published by EDP Sciences, 2015
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.