Issue |
MATEC Web Conf.
Volume 125, 2017
21st International Conference on Circuits, Systems, Communications and Computers (CSCC 2017)
|
|
---|---|---|
Article Number | 01003 | |
Number of page(s) | 4 | |
Section | Circuits | |
DOI | https://doi.org/10.1051/matecconf/201712501003 | |
Published online | 04 October 2017 |
Design of a full 1Mb STT-MRAM based on advanced FDSOI technology
Univ. Grenoble Alpes, INAC-SPINTEC; CNRS; CEA, 17 rue des Martyrs, Grenoble, France
* Corresponding author: kotb.jabeur@cea.fr
guillaume.prenat@cea.fr
In one hand, the shrinking of CMOS technology nodes is dramatically increasing the leakage current in integrated circuits. In the other hand, modern portable devices first concern is power-efficiency to insure a better autonomy. Thus, new device technologies and computing strategies are required in integrated systems to save power without limiting processing performances. The use of Non-Volatile Memories (NVM) seems to be a choice of a great interest in complex computing systems. But, their integration within heterogeneous technologies remains a real challenge. Among emerging NV memories, Spin Transfer Torque Magnetic Random Access Memories (STT-MRAM) is considered as one of the most attractive candidates to overcome shortcomings of conventional memories. In this paper, we describe the design of a fully embedded STT-MRAM. We developed and validated a complete MRAM platform to simulate and evaluate a 1Mb STT-MRAM based on 28nm FDSOI technology. Furthermore, we exploited body back biasing techniques offered by the FDSOI technology to achieve 60% of decrease in term of leakage power and give the possibility to increase performance up to 2x.
© The Authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.