Open Access
Issue |
MATEC Web Conf.
Volume 410, 2025
2025 3rd International Conference on Materials Engineering, New Energy and Chemistry (MENEC 2025)
|
|
---|---|---|
Article Number | 01038 | |
Number of page(s) | 10 | |
Section | Recent Advances in Energy Storage Systems and Sustainable Fuel Technologies | |
DOI | https://doi.org/10.1051/matecconf/202541001038 | |
Published online | 24 July 2025 |
- R. Gupta, A. Mishra, Y. Thirupathaiah, A.K. Chandel, Biochemical conversion of CO2 in fuels and chemicals: status, innovation, and industrial aspects. Biomass Convers. Biorefin. 14, 3007–3030 (2024) [Google Scholar]
- NOAA Climate.gov. “ClimateDashboard-Atmospheric-Carbon-Dioxide-Image-Paleo- 20250428-1400px.png.” April 30, 2025. Retrieved on: May 2, 2025. Retrieved from: www.climate.gov/media/16929. [Google Scholar]
- I. Tiseo, Statista. “Global CO2 Emissions by Year 1940-2024”. January 15, 2025. Retrieved on: May 2, 2025. Retrieved from: www.statista.com/statistics/276629/global-co2-emissions/#:~:text=Global%20carbon%20dioxide%20emissions%20from%20fossil%20fuels,have%20increased%20by%20more%20than%2060%20percent. [Google Scholar]
- M. Mikkelsen, M. Jørgensen, F.C. Krebs, Synthesis and characterization of zwitterionic carbon dioxide fixing reagents. International Journal of Greenhouse Gas Control. 4, 452–458 (2009) [Google Scholar]
- R. Lindsey, NOAA Climate.gov. “Climate Change: Atmospheric Carbon Dioxide.” April 9, 2024. Retrieved on: May 2, 2025. Retrieved from: www.climate.gov/news-features/understanding-climate/climate-change-atmospheric-carbon-dioxide. [Google Scholar]
- D. Archer, M. Eby, V. Brovkin, A. Ridgwell, L. Cao, U. Mikolajewicz, K. Caldeira, K. Matsumoto, G. Munhoven, A. Montenegro, K. Tokos, Atmospheric lifetime of fossil fuel carbon dioxide. Annual Review of Earth and Planetary Sciences. 37, 117–134 (2009) [Google Scholar]
- O. Al Yafiee, F. Mumtaz, P. Kumari, G.N. Karanikolos, A. Decarlis, L.F. Dumée, Direct air capture (DAC) vs. direct ocean capture (DOC) – a perspective on scale-up demonstrations and environmental relevance to sustain decarbonization. Chemical Engineering Journal. 497, 154421 (2024) [Google Scholar]
- Deepseek. “Explain the current state of carbon-neutral fuel production, focusing on e-fuels, biofuels, and solar fuels.” www.chat.deepseek.com. [Google Scholar]
- ING.com. “Synthetic Fuels Could Be the Answer to Shipping’s Net-Zero Goals, but Don’t Count on Them Yet.” May 15, 2023. Retrieved on: May 2, 2025. Retrieved from: www.ing.com/Newsroom/News/Synthetic-fuels-could-be-the-answer-to-shippings-net-zero-goals-but-dont-count-on-them-yet.htm. [Google Scholar]
- S. Jiang, H. Suo, T. Zhang, C. Liao, Y. Wang, Q, Zhao, W. Lai, Recent Advances in Seawater Electrolysis. Catalysts. 12, 123 (2022) [Google Scholar]
- Z. Yu, L. Liu, Recent advances in hybrid seawater electrolysis for hydrogen production. Advanced Materials. 36, (2023). [Google Scholar]
- F. T Mackenzie, A. C Duxbury, Encyclopedia Britannica. “Seawater | Composition, Properties, Distribution, & Facts.” July 20, 1998. Retrieved on: April 8, 2025. Retrieved from: www.britannica.com/science/seawater. [Google Scholar]
- A. Pandiyan, L. Veeramuthu, Z. Yan, Y. Lin, C. Tsai, S, Chang, W. Chiang, S. Xu, T, Zhou, C. Kuo, A comprehensive review on perovskite and its functional composites in smart textiles: progress, challenges, opportunities, and future directions. Progress in Materials Science. 140, 101206–101206 (2023) [Google Scholar]
- M.A. Khan, T. Al-Attas, S. Roy, M.M. Rahman, N. Ghaffour, V. Thangadurai, S. Larter, J. Hu, P.M. Ajayan, M.G. Kibria, Seawater electrolysis for hydrogen production: a solution looking for a problem? Energy & Environmental Science. 14, 4831–4839 (2021) [Google Scholar]
- Deepseek. “How much more energy-intensive is seawater electrolysis compared to freshwater electrolysis?” www.chat.deepseek.com. [Google Scholar]
- R. Custelcean, Direct air capture of CO2 using solvents. Annual Review of Chemical and Biomolecular Engineering. 13, 217–234 (2022) [Google Scholar]
- N. Onishi, Y. Himeda, Toward methanol production by CO2 hydrogenation beyond formic acid formation. Accounts of Chemical Research. 57, 2816–2825 (2024) [Google Scholar]
- M.H. Islam, O. Burheim, J. Hihm, B.G. Pollet, Sonochemical conversion of CO2 into hydrocarbons: the sabatier reaction at ambient conditions. Ultrasonics Sonochemistry. 73, 105474 (2021) [Google Scholar]
- J.C. Navarro, M.A. Centeno, O.H. Laguna, J.A. Odriozola, Policies and motivations for the CO2 valorization through the sabatier reaction using structured catalysts. A Review of the Most Recent Advances. Catalysts. 8, 578 (2018) [Google Scholar]
- M. Ojeda, R. Nabar, A.U. Nilekar, A. Ishikawa, M. Mavrikakis, E. Iglesia, CO Activation pathways and the mechanism of Fischer–Tropsch synthesis. Journal of Catalysis. 272, 287–297 (2010) [Google Scholar]
- National Energy Technology Laboratory. “10.2. Fischer-Tropsch Synthesis.” 2017. Retrieved on: May 9, 2025. Retrieved from: www.netl.doe.gov/research/carbon-management/energy-systems/gasification/gasifipedia/ftsynthesis. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.