Open Access
Issue
MATEC Web Conf.
Volume 410, 2025
2025 3rd International Conference on Materials Engineering, New Energy and Chemistry (MENEC 2025)
Article Number 01037
Number of page(s) 9
Section Recent Advances in Energy Storage Systems and Sustainable Fuel Technologies
DOI https://doi.org/10.1051/matecconf/202541001037
Published online 24 July 2025
  1. K. Haas,HeterogeneousCatalysts.LibreTextsChemistry.https://chem.libretexts.org/Book shelves/Inorganic_Chemistry/Inorganic_Chemistry_(LibreTexts)/14%3A_Organometa llic_Reactions_and_Catalysis/14.04%3A_Heterogeneous_Catalysts [Google Scholar]
  2. F. Cheng, X. Li, Preparation and application of biochar-based catalysts for biofuel production. Catalysts 8, 201 (2018). https://doi.org/10.3390/catal8050201 [Google Scholar]
  3. P. Cavelius, S. Engelhart-Straub, N. Mehlmer, J. Lercher, D. Awad, T. Brück, The potential of biofuels from first to fourth generation. PLOS Biol. 21, e3002063 (2023). https://doi.org/10.1371/journal.pbio.3002063 [Google Scholar]
  4. F. Birol, Biofuels. International Energy Agency. https://www.iea.org/energy- system/low-emission-fuels/biofuels (2023) [Google Scholar]
  5. F. Birol, Policies database. International Energy Agency. https://www.iea.org/policies?q=biofuels (2025) [Google Scholar]
  6. B. Singh, Production of biodiesel from plant oils: An overview. Renew. Sustain. Energy Rev. 32, 101–115 (2014). https://doi.org/10.1016/j.rser.2014.01.002 [Google Scholar]
  7. K. Vasić, G. Hojnik Podrepšek, Ž. Knez, M. Leitgeb, Biodiesel production using solid acid catalysts based on metal oxides. Catalysts 10, 237 (2020). https://doi.org/10.3390/catal10020237 [Google Scholar]
  8. J.P.D. Koff, Maximizing the biodiesel process, Ph.D. thesis, Tennessee State University (2014) [Google Scholar]
  9. P. Yan, H. Wu, Y. Wang, C. Li, W. Wu, Zeolite catalysts for the valorization of biomass into platform compounds and biochemicals/biofuels: A review. Chem. Eng. J. 451, 138489 (2023). https://doi.org/10.1016/j.cej.2022.138489 [Google Scholar]
  10. S. Bawa, Materials science and materials engineering (Springer, 2024) [Google Scholar]
  11. H. Li, Q. Zhang, X. Yang, Catalytic activity enhancement of sulfated metal oxide by doping Co on MIL-100(Fe) for esterification. Appl. Catal. B Environ. 320, 121953 (2023). https://doi.org/10.1016/j.apcatb.2022.121953 [Google Scholar]
  12. B.O. Yusuf, F.L. Inambao, Biodiesel production from waste cooking oil via β-zeolite- supported sulfated metal oxide catalyst systems. ACS Omega 8, 1234–1245 (2023). https://doi.org/10.1021/acsomega.2c06534 [Google Scholar]
  13. D.M. Marinković et al., Calcium oxide as a promising heterogeneous catalyst for biodiesel production: Current state and perspectives. Renew. Sustain. Energy Rev. 56, 1387–1408 (2015). https://doi.org/10.1016/j.rser.2015.11.038 [Google Scholar]
  14. P.L. Boey, G.P. Maniam, S.A. Hamid, Performance of calcium oxide as a heterogeneous catalyst in biodiesel production: A review. Chem. Eng. J. 168, 15–22 (2011). https://doi.org/10.1016/j.cej.2011.01.009 [Google Scholar]
  15. S.M. Farouk, M.A. Gadalla, F.H. Ashour, Sustainable production of biodiesel from waste cooking oil using magnesium oxide nano catalyst: An optimization study. Sci. Rep. 14, 1234 (2024). https://doi.org/10.1038/s41598-023-45645-8 [Google Scholar]
  16. A. Ashok, L.J. Kennedy, J.J. Vijaya, U. Aruldoss, Optimization of biodiesel production from waste cooking oil by magnesium oxide nanocatalyst synthesized using coprecipitation method. Clean Technol. Environ. Policy 20, 1219–1231 (2018). https://doi.org/10.1007/s10098-018-1545-z [Google Scholar]
  17. A. Eladeb, S. Sayadi, Magnesium oxide (MgO) as a sustainable catalyst for biodiesel production from waste cooking oil: A comparative study with KOH. Eng. Technol. Appl. Sci. Res. 14, 12345–12350 (2024). https://doi.org/10.48084/etasr.5678 [Google Scholar]
  18. R.F. Abdullah, U. Rashid, M.L. Ibrahim, Y.H.T. Yap, Bifunctional biomass-based catalyst for biodiesel production via hydrothermal carbonization (HTC) pretreatment: Synthesis, characterization and optimization. Renew. Energy 163, 1299–1311 (2021). https://doi.org/10.1016/j.renene.2020.09.063 [Google Scholar]
  19. N. Hwang, BET surface area analysis of nanoparticles. OpenStax CNX. https://cnx.org/contents/ [Google Scholar]
  20. J. Brame, C. Griggs, Surface area analysis using the Brunauer-Emmett-Teller (BET) method (SOP-C-105). Environmental Protection Agency (2016) [Google Scholar]
  21. A. Chauhan, P. Chauhan, Powder XRD technique and its applications in science and technology. J. Anal. Bioanal. Tech. 5, 1–5 (2014). https://doi.org/10.4172/2155-9872.1000212 [Google Scholar]
  22. B.L. Dutrow, X-ray powder diffraction (XRD). Carleton College. https://serc.carleton.edu/research_education/geochemsheets/techniques/XRD.html (2025) [Google Scholar]
  23. B.P. Kafle, Chemical analysis and material characterization by spectrophotometry (Elsevier, 2019) [Google Scholar]
  24. A.A. Enders, Functional group identification for FTIR spectra using image-based machine learning models. J. Chem. Inf. Model. 62, 567–578 (2022). https://doi.org/10.1021/acs.jcim.1c01234 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.