Open Access
Issue
MATEC Web Conf.
Volume 409, 2025
Concrete Solutions 2025 – 9th International Conference on Concrete Repair, Durability & Technology
Article Number 14004
Number of page(s) 8
Section Concrete Durability 4
DOI https://doi.org/10.1051/matecconf/202540914004
Published online 13 June 2025
  1. De Muynck, W., Cox, K., De Belie, N. and Verstraete, W., 2008. Bacterial carbonate precipitation as an alternative surface treatment for concrete. Construction and Building Materials, 22(5), pp.875-885. [CrossRef] [Google Scholar]
  2. Davies, R., Jefferson, T. and Gardner, D., 2021. Development and testing of vascular networks for self-healing cementitious materials. Journal of Materials in Civil Engineering, 33(7), p.04021164. [CrossRef] [Google Scholar]
  3. Dinesh, S., Shanmugapriyan, R. and Sheen, S.N., 2017. A review on bacteria-based self-healing concrete. Imperial Journal of Interdisciplinary Research, 3(1), pp.2454-1362. [Google Scholar]
  4. Elliott Richardson, A. and Fuller, T., 2013. Sea shells used as partial aggregate replacement in concrete. Structural Survey, 31(5), pp.347-354. [CrossRef] [Google Scholar]
  5. Fuhaid, A.F.A. and Niaz, A., 2022. Carbonation and corrosion problems in reinforced concrete structures. Buildings, 12(5), p.586. [CrossRef] [Google Scholar]
  6. Jonkers, H.M., 2021. Bacteria-based self-healing concrete. Heron, 56(1/2), pp.1-12. [Google Scholar]
  7. Li, L., Wang, Y., Yu, P., & Zhao, S. (2024). Characterization of self-healing in cement-based materials with a low water-to-cement ratio during subsequent hydration. Journal of Building Engineering, 109553. https://doi.org/10.1016/j.jobe.2024.109553 [Google Scholar]
  8. Mahasenan, N., Smith, S. and Humphreys, K., 2003. The cement industry and global climate change: current and potential future cement industry CO₂ emissions. Greenhouse gas control technologies, 6, pp.995-1000. [CrossRef] [Google Scholar]
  9. Medeiros, J.M.P. and Di Sarno, L., 2022. Low Carbon Bacterial Self-Healing Concrete. Buildings, 12(12), p.2226. [CrossRef] [Google Scholar]
  10. Mondal, S. and Ghosh, A.D., 2018. Optimal bacterial concentration for strength enhancement of microbial concrete. Construction and Building Materials, 183, pp.202-214. [CrossRef] [Google Scholar]
  11. Mors, R. and Jonkers, H.M., 2019. Evaluation of full scale demonstrator projects of bacteria-based self-healing concrete. RILEM Technical Letters, 4, pp.138-144. [Google Scholar]
  12. Olivia, M., Mifshella, A.A. and Darmayanti, L., 2015. Mechanical properties of seashell concrete. Procedia Engineering, 125, pp.760-764. [CrossRef] [Google Scholar]
  13. Pei, R., Liu, J., Wang, S. and Yang, M., 2013. Bacterial cell walls to improve mechanical performance of concrete. Cement and Concrete Composites, 39, pp.122-130. [CrossRef] [Google Scholar]
  14. Qureshi, T. and Al-Tabbaa, A., 2020. Self-healing concrete and cementitious materials. Advanced Functional Materials, 32, pp.137-144. [Google Scholar]
  15. Ramakrishna, K., & Rao, G., 2013. Application of bacteria in concrete: A review. Materials Science and Engineering, 33(1), pp.56-64. [Google Scholar]
  16. Shaikh, F.U.A., 2018. Effect of cracking on corrosion of steel in concrete. International Journal of Concrete Structures and Materials, 12, pp.1-12. [CrossRef] [Google Scholar]
  17. Tan, I.S. and Ramamurthi, K.S., 2014. Spore formation in Bacillus subtilis. Environmental Microbiology Reports, 6(3), pp.212-225. [CrossRef] [Google Scholar]
  18. Van Tittelboom, K. and De Belie, N., 2010. Suitability of healing agents in self-healing concrete. Int. J. 3R’s, 1(1), pp.12-21. [Google Scholar]
  19. Wang, J.Y., Soens, H., Verstraete, W. and De Belie, N., 2014. Self-healing concrete using microencapsulated bacterial spores. Cement and Concrete Research, 56, pp.139-152. [Google Scholar]
  20. Yao, Z., Xia, M., Li, H., Chen, T., Ye, Y. and Zheng, H., 2014. Bivalve shell: A functional biomaterial. Critical Reviews in Environmental Science and Technology, 44(22), pp.2502-2530. [CrossRef] [Google Scholar]
  21. Van der Zwaag, S., van Dijk, N.H., Jonkers, H.M., Mookhoek, S.D. and Sloof, W.G. Self-healing behaviour in man-made engineering. [Google Scholar]
  22. FAO, 2018. The State of World Fisheries and Aquaculture. Food and Agriculture Organization of the United Nations. [Google Scholar]
  23. Concrete Corrosion Inhibitor. Available at: https://www.yara.co.uk/chemical-and- environmental-solutions/concrete-accelerator- admixture/concrete-corrosion-inhibitor [Google Scholar]
  24. BS EN 1097‐6 (2022). Mechanical & Physical Properties of Aggregates. [Google Scholar]
  25. BS EN 12350-1 (2019). Testing Fresh Concrete – Sampling. [Google Scholar]
  26. BS EN 12350-2 (2019). Slump Test. [Google Scholar]
  27. BS EN 12350-6 (2019). Density. [Google Scholar]
  28. BS EN 12390-2 (2019). Making & curing specimens for strength tests. [Google Scholar]
  29. BS EN 12390-8 (2019). Depth of penetration under water pressure. [Google Scholar]
  30. BS EN 1992‐1‐1 (2004). Design of concrete structures. [Google Scholar]
  31. BS EN 196-3 (2016). Cement – Setting times & soundness. [Google Scholar]
  32. Kern, J. 2021. testing procedure overview tests relevant with self healing concrete. Document no. BP2101, Revision 0.2. [Google Scholar]
  33. Neville, V., Brooks, J.H. and Allen, J.B., 2010. “Sports injuries in an America’s Cup yachting crew: A 4-year epidemiological study covering the 2007 challenge”–A critical commentary. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.