Open Access
Issue
MATEC Web Conf.
Volume 409, 2025
Concrete Solutions 2025 – 9th International Conference on Concrete Repair, Durability & Technology
Article Number 14003
Number of page(s) 10
Section Concrete Durability 4
DOI https://doi.org/10.1051/matecconf/202540914003
Published online 13 June 2025
  1. Söylev, T.A., & Richardson, M.G. (2008). Corrosion inhibitors for steel in concrete: State-of-the-art report. Construction and Building Materials, 22(4), 609–622. https://doi.org/10.1016/j.conbuildmat.2006.10.013 [CrossRef] [Google Scholar]
  2. Van Oss, H.G., & Padovani, A.C. (2002). Cement manufacture and the environment: part I: chemistry and technology. Journal of Industrial Ecology, 6(1), 89–105. [CrossRef] [Google Scholar]
  3. Gartner, E. (2004). Industrially interesting approaches to “low-CO₂” cements. Cement and Concrete Research, 34, 1489–1498. https://doi.org/10.1016/j.cemconres.2004.01.0 21 [CrossRef] [Google Scholar]
  4. Ashraf, W. (2016). Carbonation of cement- based materials: Challenges and opportunities. Construction and Building Materials, 120, 558–570. [CrossRef] [Google Scholar]
  5. Imbabi, M.S., Carrigan, C., & McKenna, S. (2012). Trends and developments in green cement and concrete technology. International Journal of Sustainable Built Environment, 1, 194–216. https://doi.org/10.1016/j.ijsbe.2013.05.001 [CrossRef] [Google Scholar]
  6. Dutton, J., Smith, S., & Kelly, R. (2019). Calcium carbonate and its applications in construction materials. Journal of Sustainable Building Materials, 11, 87–102. [Google Scholar]
  7. Shi, J., et al. (2020). Evolution of mechanical properties and permeability of concrete during steam curing process. Journal of Building Engineering, 32, 101796. [CrossRef] [Google Scholar]
  8. Tayeh, B.A., et al. (2020). Durability and mechanical properties of seashell partially- replaced cement. Journal of Building Engineering, 31, 101328. https://doi.org/10.1016/j.jobe.2020.101328 [CrossRef] [Google Scholar]
  9. Ahmad, S. (2003). Reinforcement corrosion in concrete structures, its monitoring and service life prediction – a review. Cement and Concrete Composites, 25, 459–471. https://doi.org/10.1016/s0958-9465(02)00086- 0 [CrossRef] [Google Scholar]
  10. Austin, Simon A., Richard Lyons, and M. J. Ing. “Electrochemical behavior of steel- reinforced concrete during accelerated corrosion testing.” Corrosion 60.2 (2004): 203-212. [CrossRef] [Google Scholar]
  11. Yuan, S. J., and S. O. Pehkonen. “Surface characterization and corrosion behavior of 70/30 Cu–Ni alloy in pristine and sulfide- containing simulated seawater.” Corrosion Science 49.3 (2007): 1276-1304. [CrossRef] [Google Scholar]
  12. Al-Amoudi, O.S., et al. (2003). Effectiveness of corrosion inhibitors in contaminated concrete. Cement and Concrete Composites, 25, 439–449. https://doi.org/10.1016/s0958- 9465(02)00084-7 [CrossRef] [Google Scholar]
  13. Ann, K., et al. (2006). Effect of calcium nitrite-based corrosion inhibitor in preventing corrosion of embedded steel in concrete. Cement and Concrete Research, 36, 530–535. https://doi.org/10.1016/j.cemconres.2005.09.0 03 [Google Scholar]
  14. Bamigboye, G., et al. (2021). Mechanical and durability assessment of concrete containing seashells: A review. Cogent Engineering, 8, 1883830. https://doi.org/10.1080/23311916.2021.18838 30 [CrossRef] [Google Scholar]
  15. Bolzoni, F., Brenna, A., & Ormellese, M. (2022). Recent advances in the use of inhibitors to prevent chloride-induced corrosion in reinforced concrete. Cement and Concrete Research, 154, 106719. https://doi.org/10.1016/j.cemconres.2022.106 719 [CrossRef] [Google Scholar]
  16. Guendouz, M., et al. (2023). Valorization of coffee waste as bio-aggregates in crushed sand concrete production. Environmental Engineering and Management Journal, 22, 147–156. https://doi.org/10.30638/eemj.2023.013 [CrossRef] [Google Scholar]
  17. Guendouz, L., et al. (2023). Use of seashell waste in construction: A review. Journal of Environmental Management, 333, 116553. https://doi.org/10.1016/j.jenvman.2023.11655 3 [Google Scholar]
  18. Güneyisi, E., Özturan, T., & Gesoğlu, M.A. (2005). Study on reinforcement corrosion and related properties of plain and blended cement concretes under different curing conditions. Cement and Concrete Composites, 27, 449–461. [CrossRef] [Google Scholar]
  19. Kumar, M.P., Mini, K., & Rangarajan, M. (2018). Ultrafine GGBS and calcium nitrate as concrete admixtures for improved mechanical properties and corrosion resistance. Construction and Building Materials, 182, 249–257. https://doi.org/10.1016/j.conbuildmat.2018.06.096 [CrossRef] [Google Scholar]
  20. Mian, M.A., Zhang, J., & Dong, Z. (2013). CO₂ emission reduction in the cement industry: A review of techniques and strategies. Journal of Cleaner Production, 51, 126–134. https://doi.org/10.1016/j.jclepro.2012.10.023 [CrossRef] [Google Scholar]
  21. Ormellese, M., Bolzoni, F., & Brenna, A. (2022). Effect of a nitrate-based corrosion inhibitor on carbonation-induced corrosion. Corrosion, Article 4160. https://doi.org/10.5006/4160 [Google Scholar]
  22. Raghav, M., et al. (2021). Assessment of corrosion performance of steel rebar in snail shell ash blended cements under marine environments. Materials, 14, 7286. https://doi.org/10.3390/ma14237286 [CrossRef] [Google Scholar]
  23. Rodrigues, Alisson Mendes, et al. “Development of eco-friendly mortars produced with kaolin processing waste: durability behavior viewpoint.” Sustainability 13.20 (2021): 11395. [CrossRef] [Google Scholar]
  24. Sakthi Balan, G., et al. (2020). Investigation on water absorption and wear characteristics of waste plastics and seashell powder reinforced polymer composite. Journal of Tribology, –, 57–70. [Google Scholar]
  25. Sharkawi, A.M., & Seyam, A.M. (2019). Efficiency of accelerated techniques for assessing corrosion protection of blended cements. Magazine of Concrete Research, 71, 637–646. https://doi.org/10.1680/jmacr.17.00269 [CrossRef] [Google Scholar]
  26. Song, H.W., & Saraswathy, V. (2007). Corrosion Monitoring of Reinforced Concrete Structures – A Review. International Journal of Electrochemical Science, 2, 1–28. https://doi.org/10.1016/s1452-3981(23)17049- 0 [CrossRef] [Google Scholar]
  27. Etuk, B.R., Etuk, I.F., & Asuquo, L.O. (2012). Feasibility of using sea shells ash as admixtures for concrete. Journal of Environmental Science and Engineering, A1, 121–127. [Google Scholar]
  28. Lertwattanaruk, P., Makul, N., & Siripattarapravat, C. (2012). Utilization of ground seashells in cement mortars for masonry and plastering. Cement and Concrete Composites, 34, 893–903. [CrossRef] [Google Scholar]
  29. Abinaya, S., & Venkatesh, S.P. (2016). An effect on oyster shell powder’s mechanical properties in self-compacting concrete. International Journal of Innovative Research in Science, Engineering and Technology, 5, Article 0506296. https://doi.org/10.15680/IJIRSET.2016.05062 96 [Google Scholar]
  30. Mahasenan, N., Smith, S., & Humphreys, K. (2003). The cement industry and global climate change: Current and potential future cement industry CO₂ emissions. In: Greenhouse Gas Control Technologies (pp. 995–1000). Elsevier. https://doi.org/10.1016/B978-008044276- 1/50157-4 [Google Scholar]
  31. JeyaSundar, P.G.S.A., et al. (2020). Waste treatment approaches for environmental sustainability. In: Elsevier eBooks (pp. 119–135). https://doi.org/10.1016/b978-0-12- 819001-2.00006-1 [Google Scholar]
  32. JeyaSundar, D., Sundaravadivelu, R., & Ramachandran, K. (2020). Exploring seashell waste for sustainable construction. Materials Today: Proceedings, 27, 1234–1241. https://doi.org/10.1016/j.matpr.2020.02.564 [Google Scholar]
  33. Olivia, M., & Oktaviani, R. (2017). Properties of concrete containing ground waste cockle and clam seashells. Procedia Engineering, 171, 658–663. [CrossRef] [Google Scholar]
  34. Dutton, A., Webster, J.M., & Zwartz, D. (2019). The impact of sea-level rise on coral reefs: A global synthesis. Geological Society, London, Special Publications, 498, 205–234. [Google Scholar]
  35. Mohammad, W.A.S.B.W., et al. (2017). A review on seashells ash as partial cement replacement. IOP Conference Series: Materials Science and Engineering, 271, 012059. https://doi.org/10.1088/1757- 899X/271/1/012059 [CrossRef] [Google Scholar]
  36. Satish, V.L., & Ravindra, V. (2021). Evaluation of corrosion resistance of corrosion inhibitors in concrete structures by Impressed voltage test. IOP Conference Series: Materials Science and Engineering, 1025, 012002. https://doi.org/10.1088/1757-899X/1025/1/012002 [Google Scholar]
  37. Circular Ecology. (n.d.). Embodied carbon footprint database. https://www.circularecology.com/embodied-carbon-footprint-database.html [Google Scholar]
  38. Yara International. (2022). Concrete Corrosion Inhibitor. https://www.yara.com/industrial-nitrogen/concrete-additives/concrete- corrosion-inhibitor/. [Google Scholar]
  39. NRMCA, Concrete CO₂ Fact Sheet, National Ready Mixed Concrete Association, Silver Spring, MD, 2008. [Online]. Available: https://www.nrmca.org/wp-content/uploads/2020/10/ConcreteCO 2FactSheet07.pdf. [Google Scholar]
  40. ASTM B 117-03, “Standard Practice for Operating Salt Spray (Fog) Apparatus” (West Conshohocken, PA: ASTM). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.