Open Access
Issue
MATEC Web Conf.
Volume 409, 2025
Concrete Solutions 2025 – 9th International Conference on Concrete Repair, Durability & Technology
Article Number 12003
Number of page(s) 9
Section Concrete Durability 3
DOI https://doi.org/10.1051/matecconf/202540912003
Published online 13 June 2025
  1. M.A. Mirgozar Langaroudi, M. Mohtasham Moein, A. Saradar, M. Karakouzian. Investigation of the Mechanical Properties and Durability of Fiber-Reinforced Geopolymer Mortars Containing Metakaolin and Glass Powder. Infrastructures (Basel) 10, 25 (2025) doi:10.3390/infrastructures10020025 [CrossRef] [Google Scholar]
  2. M. Mohtasham Moein, K. Rahmati, A. Mohtasham Moein, S.E. Rigby, A. Saradar, M. Karakouzian. Utilizing Construction and Demolition Waste in Concrete as a Sustainable Cement Substitute: A Comprehensive Study on Behavior Under Short-Term Dynamic and Static Loads via Laboratory and Numerical Analysis. Journal of Building Engineering, 110778 (2024) doi:https://doi.org/10.1016/j.jobe.2024.110778 [Google Scholar]
  3. A. Heidari, D. Tavakoli. Performance of ceramic tile powder as a pozzolanic material in concrete. International Journal of Advanced Materials Science, 3(1), 1-11 (2012) [Google Scholar]
  4. R. Yu, P. Spiesz, H.J.H. Brouwers. Development of an Eco-Friendly Ultra-High Performance Concrete (UHPC) with Efficient Cement and Mineral Admixtures Uses. Cem Concr Compos, 55 (2015) doi:10.1016/j.cemconcomp.2014.09.024 [Google Scholar]
  5. M.H. Mohammad Nezhad Ayandeh, O. Ghodousian, H. Mohammad Nezhad, M. Mohtasham Moein, A. Saradar, M. Karakouzian. Steel Slag and Zeolite as Sustainable Pozzolans for UHPC: An Experimental Study of Binary and Ternary Pozzolan Mixtures under Various Curing Conditions. Innovative Infrastructure Solutions, 9, 265 doi:10.1007/s41062-024-01592-5 (2024) [CrossRef] [Google Scholar]
  6. A. Soltani, A. Tarighat, R. Rostami, D. Tavakoli, A. Moradi. Investigation of mechanical properties of concrete with clinoptilolite and silica fume using Taguchi method. Innovative Infrastructure Solutions, 9(3), 77 (2024) [CrossRef] [Google Scholar]
  7. M.M. Moein, A.M. Moein, A. Saradar, S.E. Rigby, H. Tazari, M. Karakouzian. Mechanical Properties of Portland Cement Concrete Mixed with Different Doses of Recycled Brick Powder and Steel Fiber. Heliyon, 11, e41900 (2025) doi:10.1016/j.heliyon.2025.e41900 [CrossRef] [Google Scholar]
  8. M. Mohtasham Moein, K. Rahmati, A. Mohtasham Moein, A. Saradar, S.E. Rigby, A. Akhavan Tabassi. Employing Neural Networks, Fuzzy Logic, and Weibull Analysis for the Evaluation of Recycled Brick Powder in Concrete Compositions. Buildings, 14, 4062 (2024) doi:10.3390/buildings14124062 [CrossRef] [Google Scholar]
  9. S.H. Park, G.S. Ryu, K.T. Koh, D.J. Kim. Effect of Shrinkage Reducing Agent on Pullout Resistance of High-Strength Steel Fibers Embedded in Ultra-High-Performance Concrete. Cem Concr Compos 49 (2014) doi:10.1016/j.cemconcomp.2013.12.012 [Google Scholar]
  10. ASTM International ASTM C1856/C1856M-17 - Standard Practice for Fabricating and Testing Specimens of Ultra-High Performance Concrete. ASTM International 04.02 (2017) [Google Scholar]
  11. D. Wang, C. Shi, N. Farzadnia, Z. Shi, H. Jia, Z. Ou. A Review on Use of Limestone Powder in Cement-Based Materials: Mechanism, Hydration and Microstructures. Constr Build Mater, 181 (2018) [Google Scholar]
  12. T. Matschei, B. Lothenbach, F.P. Glasser. The Role of Calcium Carbonate in Cement Hydration. Cem Concr Res, 37 (2007) doi:10.1016/j.cemconres.2006.10.013 [Google Scholar]
  13. J. Camiletti, A.M. Soliman, M.L. Nehdi. Effects of Nano- and Micro-Limestone Addition on Early-Age Properties of Ultra-High-Performance Concrete. Materials and Structures/Materiaux et Constructions, 46 (2013) doi:10.1617/s11527-012-9940-0 [Google Scholar]
  14. M. Mazloom, A.A. Ramezanianpour, J.J. Brooks. Effect of Silica Fume on Mechanical Properties of High-Strength Concrete. Cem Concr Compos, 26, 347–357 doi:10.1016/S0958-9465(03)00017-9 (2004) [CrossRef] [Google Scholar]
  15. M. Ali, M.S. Abdullah, S.A. Saad. Effect of Calcium Carbonate Replacement on Workability and Mechanical Strength of Portland Cement Concrete. Adv Mat Res, 1115 (2015) doi:10.4028/www.scientific.net/amr.1115.137 [Google Scholar]
  16. S. Barbhuiya, M. Qureshi. Effects of Silica Fume on the Strength and Durability Properties of Concrete. In Proceedings of the 1st International Conference on Civil Engineering for Sustainable Development - Opportunities and Challenges (2016) [Google Scholar]
  17. P. Lertwattanaruk, G. Sua-iam, N. Makul. Effects of Calcium Carbonate Powder on the Fresh and Hardened Properties of Self-Consolidating Concrete Incorporating Untreated Rice Husk Ash. J Clean Prod, 172 (2018) doi:10.1016/j.jclepro.2017.10.336 [Google Scholar]
  18. T. Luo, C. Hua, F. Liu, Q. Sun, Y. Yi, X. Pan. Effect of Adding Solid Waste Silica Fume as a Cement Paste Replacement on the Properties of Fresh and Hardened Concrete. Case Studies in Construction Materials, 16 (2022) doi:10.1016/j.cscm.2022.e01048 [Google Scholar]
  19. Q. Fu, Z. Zhang, X. Zhao, W. Xu, D. Niu. Effect of Nano Calcium Carbonate on Hydration Characteristics and Microstructure of Cement- Based Materials: A Review. Journal of Building Engineering, 50 (2022) [Google Scholar]
  20. P.P. Li, H.J.H. Brouwers, W. Chen, Q. Yu. Optimization and Characterization of High- Volume Limestone Powder in Sustainable Ultra- High Performance Concrete. Constr Build Mater, 242 (2020) doi:10.1016/j.conbuildmat.2020.118112 [Google Scholar]
  21. J. Xi, J. Liu, K. Yang, S. Zhang, F. Han, J. Sha, X. Zheng. Role of Silica Fume on Hydration and Strength Development of Ultra-High Performance Concrete. Constr Build Mater, 338 (2022) doi:10.1016/j.conbuildmat.2022.127600 [Google Scholar]
  22. Z. Wu, K.H. Khayat, C. Shi. Changes in Rheology and Mechanical Properties of Ultra- High Performance Concrete with Silica Fume Content. Cem Concr Res, 123 (2019) doi:10.1016/j.cemconres.2019.105786 [Google Scholar]
  23. J.F. Burroughs, J. Shannon, T.S. Rushing, K. Yi, Q.B. Gutierrez, D.W. Harrelson. Potential of Finely Ground Limestone Powder to Benefit Ultra-High Performance Concrete Mixtures. Constr Build Mater, 141 (2017) doi:10.1016/j.conbuildmat.2017.02.073 [Google Scholar]
  24. ASTM ASTM C150 / C150M-19a Standard Specification for Portland Cement. Annual Book of ASTM Standards (2019) [Google Scholar]
  25. ASTM ASTM C1240 Standard Specification for Silica Fume Used in Cementitious Mixtures. Annual Book of ASTM Standards (2020) [Google Scholar]
  26. ASTM ASTM C778 Standard Specification for Standard Sand. ASTM (American Society for Testing and Materials) (2017) [Google Scholar]
  27. C.-12 Astm. Standard Specification for Mixing Water Used in the Production of Hydraulic Cement Concrete. ASTM lnternational (2012) i [Google Scholar]
  28. ASTM C494 Standard Specification for Chemical Admixtures for Concrete. ASTM International (2019) 04 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.