Open Access
Issue
MATEC Web Conf.
Volume 409, 2025
Concrete Solutions 2025 – 9th International Conference on Concrete Repair, Durability & Technology
Article Number 11004
Number of page(s) 7
Section Repair & Strengthening Materials and Techniques 2
DOI https://doi.org/10.1051/matecconf/202540911004
Published online 13 June 2025
  1. Y.Y. Kim, H.J. Kong, V.C. Li. Design of engineered cementitious composite suitable for wet-mixture shotcreting. Mater. J., 100, 79-86 (2003) [Google Scholar]
  2. J. Barros, H. Costelha, D. Bento, N. Brites, R. Luís. A multidisciplinary engineering-based approach for tunneling strengthening with a new fibre-reinforced shotcrete technology. Tunn. Undergr. Space Technol., 124, 103682 (2024). DOI: 10.1016/j.tust.2024.103682 [Google Scholar]
  3. V.C. Li. On engineered cementitious composites (ECC): A review of the material and its applications. J. Adv. Concr. Technol., 1, 215-230 (2003). DOI: 10.3151/jact.1.215 [CrossRef] [Google Scholar]
  4. V. Li, The design of cementitious composites for civil engineering applications. J. Struct. Mech. Earthq. Eng., JSCE 10, 37–48 (1993). [Google Scholar]
  5. B.T. Huang, Fatigue performance of strain- hardening fibre-reinforced cementitious composite and its functionally-graded structures, 2018 [Google Scholar]
  6. F. Avet, K. Scrivener, Investigation of the calcined kaolinite content on the hydration of Limestone Calcined Clay Cement (LC3). Cem. Concr. Res. 107, 124–135 (2018). [CrossRef] [Google Scholar]
  7. A.H. Ahmed, S. Nune, M. Liebscher, T. Köberle, A. Willomitzer, I. Noack, M. Butler, V. Mechtcherine, Exploring the role of dilutive effects on microstructural development and hydration kinetics of limestone calcined clay cement (LC3) made of low-grade raw materials, J. Clean. Prod. 428 (2023) 139438. https://doi.org/10.1016/j.jclepro.2023.139438. [CrossRef] [Google Scholar]
  8. H. Zhu, K. Yu, V. C. Li, Sprayable engineered cementitious composites (ECC) using calcined clay limestone cement (LC3) and PP fiber. Cem. Concr. Compos. 115, 103868 (2021). [CrossRef] [Google Scholar]
  9. B.T. Huang, Q.H. Li, S.L. Xu, B. Zhou, Strengthening of reinforced concrete structure using sprayable fibre-reinforced cementitious composites with high ductility, Compos. Struct. 220 (2019) 940–952. https://doi.org/10.1016/j.compstruct.2019.04.061. [CrossRef] [Google Scholar]
  10. Y.Y. Kim, G. Fischer, Y.M. Lim, V.C. Li, Mechanical performance of sprayed engineered cementitious composite using wet-mix shotcreting process for repair applications, ACI Mater. J. 101 (1) (2004) 42–49. [Google Scholar]
  11. V. Corinaldesi, A. Nardinocchi, Mechanical characterization of engineered cement-based composites prepared with hybrid fibres and expansive agent. Compos. Part B Eng. 98, 389–396 (2016). [CrossRef] [Google Scholar]
  12. A. Perrot, D. Rangeard, V. N. Nerella, V. Mechtcherine, Extrusion of cement-based materials—an overview. RILEM Tech. Lett. 3, 91–97 (2018). [Google Scholar]
  13. N. Roussel, Rheological requirements for printable concretes, Cem. Concr. Res. 112 (2018) 76–85, https://doi.org/10.1016/j.cemconres.2018.04.005. [CrossRef] [Google Scholar]
  14. T. Wangler, E. Lloret, L. Reiter, N. Hack, F. Gramazio, M. Kohler, M. Bernhard, B. Dillenburger, J. Buchli, N. Roussel, R. Flatt, Digital concrete: opportunities and challenges, RILEM Tech. Lett. 1 (2016), https://doi.org/10.21809/ rilemtechlett.2016.16. [Google Scholar]
  15. A.S.J. Suiker, R.J.M. Wolfs, S.M. Lucas, T.A.M. Salet, Elastic buckling and plastic collapse during 3D concrete printing, Cem. Concr. Res. 135 (2020), 106016, https://doi.org/10.1016/j.cemconres.2020.106016. [CrossRef] [Google Scholar]
  16. H. Zhu, K. Yu, V. C. Li, Sprayable engineered cementitious composites (ECC) using calcined clay limestone cement (LC3) and PP fiber. Cem. Concr. Compos. 115, 103868 (2021). [https://doi.org/10.1016/j.cemconcomp.2020.103868] [CrossRef] [Google Scholar]
  17. I. Ivanova, E. Ivaniuk, S. Bisetti, V. N. Nerella, V. Mechtcherine, Comparison between methods for indirect assessment of buildability in fresh 3D printed mortar and concrete. Cem. Concr. Res. 156, 106764 (2022). [https://doi.org/10.1016/j.cemconres.2022.106764] [CrossRef] [Google Scholar]
  18. J. V. Rudolph, D. Lowke, Design and characterisation of a two-component mortar system for shotcrete 3D printing: an approach to the targeted control of material properties. RILEM Int. Conf. Concr. Digit. Fabr. 2024 [Google Scholar]
  19. A. Perrot, D. Rangeard, A. Pierre, Structural built- up of cement-based materials used for 3D-printing extrusion techniques, Mater. Struct. 49 (2016) 1213–1220, https://doi.org/10.1617/s11527-015-0571-0. [CrossRef] [Google Scholar]
  20. D. Lootens, P. Jousset, L. Martinie, N. Roussel, R.J. Flatt, Yield stress during setting of cement pastes from penetration tests, Cem. Concr. Res. 39 (5) (2009) 401–408. https://doi.org/10.1016/j.cemconres.2009.01.012. [CrossRef] [Google Scholar]
  21. S. Reißig, C. Bedolla, T. Meyer, V. Mechtcherine, Rheologisches Verhalten von faserbewehrtem LC3‐Feinkornbeton im Kontext der additiven Fertigung. ce/papers 6(6), 755–763 (2023). https://doi.org/10.1002/cepa.2820 [CrossRef] [Google Scholar]
  22. X. Liu, J. Li, Q. Li, G. Hou, Mechanical performance optimization in spray-based three- dimensional-printed mortar using carbon fiber. J. Mater. Civ. Eng. 35, 04022424 (2023). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.