Open Access
Issue |
MATEC Web Conf.
Volume 409, 2025
Concrete Solutions 2025 – 9th International Conference on Concrete Repair, Durability & Technology
|
|
---|---|---|
Article Number | 10005 | |
Number of page(s) | 8 | |
Section | Concrete Durability 2 | |
DOI | https://doi.org/10.1051/matecconf/202540910005 | |
Published online | 13 June 2025 |
- U. Sattar, The 4A climate action framework, npj Climate Action 3(1) (2024) 103. [CrossRef] [Google Scholar]
- E. Commission, COP29: Joint Press Release on 1.5°C-Aligned Ambition in NDCs Toward Net Zero, 2024. https://climate.ec.europa.eu/news-your-voice/news/cop29-joint-press-release-15degc-aligned-ambition-ndcs-toward-net-zero-2024-11-21_en. (Accessed Nov 30th 2024). [Google Scholar]
- J.L. Provis, J.S.J. van Deventer, Alkali Activated Materials RILEM State-of-the-Art Reports, 2014. [Google Scholar]
- L.G. Provis, S.G. van Deventer, Geopolymers and Other Alkali-Activated Materials, in: P.C. Hewlet, M. Liska (Eds.), Lea’s Chemistry of Cement and Concrete, Elsevier, Oxford and Cambridge, 2019, pp. 779-806. [CrossRef] [Google Scholar]
- C. Shi, D. Roy, P. Krivenko, Alkali-activated cements and concretes, CRC press 2003. [CrossRef] [Google Scholar]
- H. Jiang, L. Ren, Q. Zhang, J. Zheng, L. Cui, Strength and microstructural evolution of alkali-activated slag-based cemented paste backfill: Coupled effects of activator composition and temperature, Powder Technology 401 (2022) 117322. [CrossRef] [Google Scholar]
- S.A. Bernal, E.D. Rodríguez, A.P. Kirchheim, J.L. Provis, Management and valorisation of wastes through use in producing alkali‐activated cement materials, Journal of Chemical Technology & Biotechnology 91(9) (2016) 2365-2388. [CrossRef] [Google Scholar]
- businesswaste.co.uk, Glass Waste Facts and Statistics, 2024. https://www.businesswaste.co.uk/your-waste/glass-recycling/glass-waste-facts-and-statistics/#:~:text=The%20glass%20industry%20rec ycles%20around,one%20million%20years%20to%2 0degrade. (Accessed Nov 30th 2024). [Google Scholar]
- H. Alioui, T. Chiker, F. Saidat, M. Lamara, S. Aggoun, O.M. Hamdi, Investigation of the effect of commercial limestone on alkali-activated blends based on Algerian slag-glass powder, European Journal of Environmental and Civil Engineering (2021) 1-24. [Google Scholar]
- M. Nasir, A.H. Mahmood, A.A. Bahraq, History, recent progress, and future challenges of alkali-activated binders – An overview, Construction and Building Materials 426 (2024) 136141. [CrossRef] [Google Scholar]
- R. Xiao, Y. Zhang, X. Jiang, P. Polaczyk, Y. Ma, B. Huang, Alkali-activated slag supplemented with waste glass powder: Laboratory characterization, thermodynamic modelling and sustainability analysis, Journal of Cleaner Production 286 (2021) 125554. [CrossRef] [Google Scholar]
- O. Burciaga‐Díaz, J.I. Escalante‐García, Structure, mechanisms of reaction, and strength of an alkali‐ activated blast‐furnace slag, Journal of the American Ceramic Society 96(12) (2013) 3939-3948. [CrossRef] [Google Scholar]
- H. Maraghechi, S. Salwocki, F. Rajabipour, Utilisation of alkali activated glass powder in binary mixtures with Portland cement, slag, fly ash and hydrated lime, Materials and Structures 50(1) (2016) 16. [Google Scholar]
- P. Shoaei, F. Ameri, H. Reza Musaeei, T. Ghasemi, C.B. Cheah, Glass powder as a partial precursor in Portland cement and alkali-activated slag mortar: A comprehensive comparative study, Construction and Building Materials 251 (2020) 118991. [CrossRef] [Google Scholar]
- J. Cercel, A. Adesina, S. Das, Performance of eco-friendly mortars made with alkali-activated slag and glass powder as a binder, Construction and Building Materials 270 (2021) 121457. [CrossRef] [Google Scholar]
- M.N.N. Khan, J.C. Kuri, P.K. Sarker, Effect of waste glass powder as a partial precursor in ambient cured alkali activated fly ash and fly ash-GGBFS mortars, Journal of Building Engineering 34 (2021) 101934. [CrossRef] [Google Scholar]
- S.A. Bernal, J.L. Provis, Durability of alkali‐ activated materials: progress and perspectives, Journal of the American Ceramic Society 97(4) (2014) 997-1008. [CrossRef] [Google Scholar]
- L. Liu, M. Xie, Y. He, Y. Li, X. Huang, X. Cui, C. Shi, Expansion behavior and microstructure change of alkali-activated slag grouting material in sulfate environment, Construction and Building Materials 260 (2020) 119909. [CrossRef] [Google Scholar]
- Q. Li, X. Li, K. Yang, X. Zhu, J.P. Gevaudan, C. Yang, M. Basheer, The long-term failure mechanisms of alkali-activated slag mortar exposed to wet-dry cycles of sodium sulphate, Cement and Concrete Composites 116 (2021) 103893. [CrossRef] [Google Scholar]
- A. Bouchikhi, Y. Mamindy-Pajany, W. Maherzi, C. Albert-Mercier, H. El-Moueden, M. Benzerzour, A. Peys, N.-E. Abriak, Use of residual waste glass in an alkali-activated binder–Structural characterization, environmental leaching behavior and comparison of reactivity, Journal of Building Engineering 34 (2021) 101903. [CrossRef] [Google Scholar]
- ASTMC778, Standard Specification for Standard Sand, ASTM International, West Copenhagen, 2002. [Google Scholar]
- ASTMC1329, Standard Specification for Mortar Cement, ASTM International, West Copenhagen, 2004. [Google Scholar]
- AFNOR, EN 196-1-Methods of testing cement. Part 1 : Determination of strength, NSAI Standards, Dublin, 2016. [Google Scholar]
- T. Chiker, S. Aggoun, H. Houari, R. Siddique, Sodium sulfate and alternative combined sulfate/chloride action on ordinary and self-consolidating PLC-based concretes, Construction and Building Materials 106 (2016) 342-348. [CrossRef] [Google Scholar]
- R. Vinai, M. Soutsos, Production of sodium silicate powder from waste glass cullet for alkali activation of alternative binders, Cement and Concrete Research 116 (2019) 45-56. [Google Scholar]
- L. Zhang, Y. Yue, Influence of waste glass powder usage on the properties of alkali-activated slag mortars based on response surface methodology, Construction and Building Materials 181 (2018) 527-534. [CrossRef] [Google Scholar]
- R.L. Santos, R.B. Horta, J. Pereira, T.G. Nunes, P. Rocha, R. Colaço, Alkali activation of a novel calcium‐silicate hydraulic binder with CaO/SiO2= 1.1, Journal of the American Ceramic Society 101(9) (2018) 4158-4170. [CrossRef] [Google Scholar]
- C. Bobirică, J.-H. Shim, J.-H. Pyeon, J.-Y. Park, Influence of waste glass on the microstructure and strength of inorganic polymers, Ceramics International 41(10, Part A) (2015) 13638-13649. [CrossRef] [Google Scholar]
- P. Zhang, Y. Zheng, K. Wang, J. Zhang, A review on properties of fresh and hardened geopolymer mortar, Composites Part B: Engineering 152 (2018) 79-95. [CrossRef] [Google Scholar]
- R. Idir, M. Cyr, A. Pavoine, Investigations on the durability of alkali-activated recycled glass, Construction and Building Materials 236 (2020) 117477. [CrossRef] [Google Scholar]
- M.M. Hossain, M.R. Karim, M.M.A. Elahi, M.F.M. Zain, Water absorption and sorptivity of alkali-activated ternary blended composite binder, Journal of Building Engineering 31 (2020) 101370. [CrossRef] [Google Scholar]
- F. Farcas, P. Touze, La spectrométrie infrarouge à transformée de Fourier (IRTF), Une méthode intéressante pour la caractérisation des ciments (in French) Bull. Lab. Ponts Chaussées 230 (2001) 77-88. [Google Scholar]
- D. Shi, Y. Yao, J. Ye, W. Zhang, Effects of seawater on mechanical properties, mineralogy and microstructure of calcium silicate slag-based alkali-activated materials, Construction and Building Materials 212 (2019) 569-577. [CrossRef] [Google Scholar]
- S. Zhang, A. Keulen, K. Arbi, G. Ye, Waste glass as partial mineral precursor in alkali-activated slag/fly ash system, Cement and Concrete Research 102 (2017) 29-40. [Google Scholar]
- D.E. Ortega-Zavala, J.L. Santana-Carrillo, O. Burciaga-Díaz, J.I. Escalante-García, An initial study on alkali activated limestone binders, Cement and Concrete Research 120 (2019) 267-278. [CrossRef] [Google Scholar]
- 3Y. Liu, C. Shi, Z. Zhang, N. Li, An overview on the reuse of waste glasses in alkali-activated materials, Resources, Conservation and Recycling 144 (2019) 297-309. [CrossRef] [Google Scholar]
- O. Mikhailova, A. del Campo, P. Rovnanik, J.F. Fernández, M. Torres-Carrasco, In situ characterization of main reaction products in alkali-activated slag materials by Confocal Raman Microscopy, Cement and Concrete Composites 99 (2019) 32-39. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.