Open Access
Issue
MATEC Web Conf.
Volume 409, 2025
Concrete Solutions 2025 – 9th International Conference on Concrete Repair, Durability & Technology
Article Number 06006
Number of page(s) 5
Section Concrete and Admixture Technology 1
DOI https://doi.org/10.1051/matecconf/202540906006
Published online 13 June 2025
  1. P. J. M Monteiro, S. A. Miller, A. Horvath, Towards sustainable concrete. Nature materials 16, 7, 698–699 (2017) [CrossRef] [Google Scholar]
  2. J. G. J. Olivier, G. Janssens-Maenhout, M. Muntean, J. A. Peters, Trends in global CO2 emissions. PBL Netherlands Environmental Assessment Agency, Report, (2016) [Google Scholar]
  3. S. A. Miller, A. Horvath, P. J. M Monteiro, Readily implementable techniques can cut annual CO2 emissions from the production of concrete by over 20%. Environ. Res. Lett. 11, 7, 74029 (2016) [Google Scholar]
  4. Deutsches Institut für Normung. DIN EN 197-1 Zement. Teil 1: Zusammensetzung, Anforderungen und Konformitätskriterien von Normalzement; Beuth Verlag GmbH: Berlin, (2011) [Google Scholar]
  5. D. Heinz, A. Heisig, Flugasche und Hüttensand – Zusatzstoffe mit Zukunft? In Betone der Zukunft: Herausforderungen und Chancen: 14. Symposium Baustoffe und Bauwerkserhaltung, Karlsruher Institut für Technologie (KIT), 2018-03-21; Nolting, U., Dehn, F., Haist, M., Link, J., Eds.; KIT Scientific Publishing: Karlsruhe, 2018; pp 27–36 (2018) [Google Scholar]
  6. H. Komiyama, K. Yamada, New Vision 2050. A Platinum Society, Springer Japan: Tokyo (2018) [CrossRef] [Google Scholar]
  7. Deutsches Institut für Normung, DIN EN 12390-18, Prüfung von Festbeton. Teil 18: Bestimmung des Chloridmigrationskoeffizienten; Beuth Verlag GmbH: Berlin, (2021) [Google Scholar]
  8. G. J. G. Gluth, K. Arbi, et al. RILEM TC 247- DTA round robin test: carbonation and chloride penetration testing of alkali-activated concretes, Mater Struct 53:21,1 (2020) https://doi.org/10.1617/s11527-020-1449-3 [CrossRef] [Google Scholar]
  9. S. A. Bernal, J. L. Provis, Durability of Alkali-Activated Materials: Progress and Perspectives. J. Am. Ceram. Soc. 97, 4, 997–1008 (2014) [CrossRef] [Google Scholar]
  10. R. Achenbach, B. I. E Kraft, M. Raupach, H.-M. Ludwig, Eignung des RCM‐Versuchs zur Bestimmung des Chloridmigrationskoeffizienten in Mörteln aus alternativen Bindemitteln, ce papers 6, 6, 1237–1245, (2023) [CrossRef] [Google Scholar]
  11. R. Achenbach, M. Raupach, Suitability of the rapid chloride migration test for determining the migration coefficient in mortars made from different novel binder types. Materials and Corrosion 75, 9, 1173 – 1184, https://doi.org/10.1002/maco.202414369 (2024) [CrossRef] [Google Scholar]
  12. W. J. Weiss, R. P. Spragg, et al. Toward Performance Specifications for Concrete: Linking Resistivity, RCPT and Diffusion Predictions Using the Formation Factor for Use in Specifications. In High tech concrete: Where technology and engineering meet : proceedings of the 2017 Fib Symposium, Maastricht, Netherlands, June 12-14, 2017; Hordijk, D. A., Luković, M., Eds.; Springer International Publishing: Cham, Switzerland, 2057–2065 (2018) [Google Scholar]
  13. R. Spragg, C. Villani, C.; J. Weiss, Electrical Properties of Cementitious Systems: Formation Factor Determination and the Influence of Conditioning Procedures. Adv. Civ. Eng. Matls. 5, 1, 124–148 (2016) [CrossRef] [Google Scholar]
  14. C. F. Berg, W. D. Kennedy, D. C. Herrick, Conductivity in partially saturated porous media described by porosity, electrolyte saturation and saturation‐dependent tortuosity and constriction factor. Geophysical Prospecting 70, 2, 400–420 (2022) [Google Scholar]
  15. C. Qiao, A. T. Coyle, O. B. Isgor, W. J. Weiss, Prediction of Chloride Ingress in Saturated Concrete Using Formation Factor and Chloride Binding Isotherm. Adv. Civ. Eng. Matls 7, 1, 20170141 (2018) [Google Scholar]
  16. N. Neithalath, J. Jain, Relating rapid chloride transport parameters of concretes to microstructural features extracted from electrical impedance. Cement and Concrete Research, 40, 7, 1041–1051, (2010) [CrossRef] [Google Scholar]
  17. V. Jafari Azad, A. R. Erbektas, et al. Relating the Formation Factor and Chloride Binding Parameters to the Apparent Chloride Diffusion Coefficient of Concrete. J. Mater. Civ. Eng. 31, 2, 4018392 (2019) [CrossRef] [Google Scholar]
  18. R. Zhou, R., Q. Li, Q. et al. Assessment of Electrical Resistivity and Oxygen Diffusion Coefficient of Cementitious Materials from Microstructure Features. Materials (Basel, Switzerland) 14, 12, https://doi.org/10.3390/ma14123141 (2021. [Google Scholar]
  19. M. K. Moradllo, C. Qiao, et al. Relating Formation Factor of Concrete to Water Absorption. ACI Materials Journal 2018, 115, 6, https://doi.org/10.14359/51706844 (2018) [CrossRef] [Google Scholar]
  20. W. J. Weiss, M. T. Ley et al. Toward Performance Specifications for Concrete Durability: Using the Formation Factor for Corrosion and Critical Saturation for Freeze-Thaw. In TRB, (2017) [Google Scholar]
  21. F. P. Glasser, L. Zhang, High-performance cement matrices based on calcium sulfoaluminate–belite compositions. Cement and Concrete Research 31, 12, 1881–1886 (2001) [CrossRef] [Google Scholar]
  22. J. H. Sharp, C. D. Lawrence, R. Yang, Calcium sulfoaluminate cements—low-energy cements, special cements or what? Advances in Cement Research 11, 1, 3–13 (1999) [CrossRef] [Google Scholar]
  23. B. Tan, M. U. Okoronkwo, et al. Durability of calcium sulfoaluminate cement concrete. J. Zhejiang Univ. Sci. A 2020, 21 (2), 118–128. http://dx.doi.org/10.1631/jzus.a1900588 (2020) [CrossRef] [Google Scholar]
  24. M. Carsana, M. Bianchi, M.; et al. Corrosion behaviour of steel embedded in calcium sulphoaluminate-cement concrete. In ICCC 2015 Beijing: The 14th International Congress on the Chemistry of Cement, 13-16 October, 2015. Abstract book; Shi, C., Yao, Y., Eds., (2015) [Google Scholar]
  25. K. Garbev, K.; G. Beuchle, et al. Preparation of a Novel Cementitious Material from Hydrothermally Synthesized C–S–H Phases. J. Am. Ceram. Soc. 97, 7, 2298–2307 (2014) [CrossRef] [Google Scholar]
  26. D. Hinder, A. Zimmermann, M. Fylak, Mechanochemical Activation of the C‐S‐H binder Celitement. ce papers 6, 6, 54–61 (2023) [CrossRef] [Google Scholar]
  27. P. Stemmermann, G. Beuchle, et al. Celitement – principals, making and properties. In ibausil 2012; Ludwig, H.-M., Ed.; Tagungsbericht / F.A. Finger-Institut für Baustoffkunde, Bauhaus-Universität Weimar. Herausgeber; F.A. Finger-Institut für Baustoffkunde Bauhaus-Universität Weimar: Weimar (2012) [Google Scholar]
  28. K. Garbev, G. Beuchle, et al. Understanding of the Hydration Behavior and the Resulting Development of the Microstructure of Celitement®. In ibausil 2012; Ludwig, H.-M., Ed.; Tagungsbericht / F.A. Finger-Institut für Baustoffkunde, Bauhaus-Universität Weimar. Herausgeber; F.A. Finger-Institut für Baustoffkunde Bauhaus-Universität Weimar: Weimar (2012) [Google Scholar]
  29. Deutsches Institut für Normung. DIN EN 12390-11 Prüfung von Festbeton. Teil 11: Bestimmung des Chloridwiderstandes von Beton - Einseitig gerichtete Diffusion; Beuth Verlag GmbH: Berlin (2015) [Google Scholar]
  30. R. Spragg, C. Qiao, et al., Assessing a concrete’s resistance to chloride ion ingress using the formation factor in Corrosion of Steel in Concrete Structures, ed. A. Poursaee (Elsevier, 2016), 211–238 (2016) [Google Scholar]
  31. Y.-H. Li, S. Gregory, Diffusion of ions in sea water and in deep-sea sediments, Geochimica et Cosmochimica Acta, 38, 703 – 714 (1974)] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.