Open Access
Issue |
MATEC Web Conf.
Volume 409, 2025
Concrete Solutions 2025 – 9th International Conference on Concrete Repair, Durability & Technology
|
|
---|---|---|
Article Number | 03003 | |
Number of page(s) | 11 | |
Section | Non-Destructive Testing and Diagnosis | |
DOI | https://doi.org/10.1051/matecconf/202540903003 | |
Published online | 13 June 2025 |
- Neville, A. M. (2004) Tecnologia do concreto Trad. de Ruy Alberto Cremonini, 2.ed. Porto Alegre, Bookman, 2013. [Google Scholar]
- Mehta, P. K., Monteiro, P. J. M. (1994) Concreto: Estrutura, Propriedades e Materiais, São Paulo, Ed. PINI. [Google Scholar]
- Silva, E. F. (2007) Variações dimensionais em concretos de alta resistência contendo aditivo redutor de retração. Tese de Doutorado, Universidade Federal do Rio de Janeiro, COPPE, Rio de Janeiro. [Google Scholar]
- Aitcin, P. C. (1998) Autogenous shrinkage measurement. In: E. Tazawa (ed), Autoshrink’ 98, Proceedings of the International Workshop on Autogenous Shrinkage of Concrete, Hiroshima, Japan June, pp. 245-256. [Google Scholar]
- Associação Brasileira de Normas Técnicas. (2003). NBR NM 65: Cimento Portland – Determinação do tempo de pega. ABNT. [Google Scholar]
- Baranyi, A., Kopecskó, K., & Csetényi, L. (2024). Assessing setting times of cementitious materials using semi-adiabatic calorimetry. Journal of Thermal Analysis and Calorimetry, 149(17), 9193-9201. [CrossRef] [Google Scholar]
- Kang, X., Lei, H., & Xia, Z. (2020). A comparative study of modified fall cone method and semi-adiabatic calorimetry for measurement of setting time of cement-based materials. Construction and Building Materials, 248, 118634. [CrossRef] [Google Scholar]
- Gawlicki, M., Nocuń-Wczelik, W., & Bąk, Ł. (2010). Calorimetry in the studies of cement hydration: setting and hardening of Portland cement–calcium aluminate cement mixtures. Journal of thermal analysis and calorimetry, 100(2), 571-576. [CrossRef] [Google Scholar]
- Topolář, L., Pazdera, L., Kucharczyková, B., Smutný, J., & Mikulášek, K. (2017). Using acoustic emission methods to monitor cement composites during setting and hardening. Applied Sciences, 7(5), 451. [CrossRef] [Google Scholar]
- Von Daake, H., & Stephan, D. (2016). Setting of cement with controlled superplasticizer addition monitored by ultrasonic measurements and calorimetry. Cement and Concrete Composites, 66, 24-37. [CrossRef] [Google Scholar]
- Trtnik, G., Turk, G., Kavčič, F., & Bosiljkov, V. B. (2008). Possibilities of using the ultrasonic wave transmission method to estimate initial setting time of cement paste. Cement and Concrete Research, 38(11), 1336-1342. [CrossRef] [Google Scholar]
- Gabrijel, I., Mikulic, D., & Milovanovic, B. (2011). Application of ultrasonic measurements for determination of setting and hardening in cement paste. Journal of civil engineering and architecture, 5(3). [Google Scholar]
- Lee, H. K., Lee, K. M., Kim, Y. H., & Yim, H. J. (2002). Estimation of setting time and early-age strength of concrete using the ultrasonic pulse velocity. Journal of the Korean Society for Nondestructive Testing, 22(3), 292-303. [Google Scholar]
- Huang, H., & Ye, G. (2017). Examining the “time-zero” of autogenous shrinkage in high/ultra-high performance cement pastes. Cement and Concrete Research, 97, 107-114. [Google Scholar]
- Ma, Y., Yang, X., Hu, J., Zhang, Z., & Wang, H. J. C. P. B. E. (2019). Accurate determination of the “time-zero” of autogenous shrinkage in alkali-activated fly ash/slag system. Composites Part B: Engineering, 177, 107367. [CrossRef] [Google Scholar]
- Wang, H., Liu, Y., Hu, Z., Liu, Z., Xu, D., & Liu, J. (2024). Assessment of determination methods for time-zero of autogenous shrinkage in cement mortars. Cement and Concrete Composites, 105607. [Google Scholar]
- Cunha, T. A., Francinete, P., Agostinho, L. B., Silva, E. F., & Lopes, A. (2017). Study of the autogenous shrinkage in microconcretes containing superabsorbent polymer and nano-silica. 2nd International RILEM/COST Conferece on Early Age Cracking and Serviceability in Cement-Based Materials and Structures, Brussels, Belgium, 251-256. [Google Scholar]
- Manzano, M. A. R., Moraes, B. J., Cerqueira, C. M., Silva, E. F., & Lopes, A. N. M. (2015). Determinação do tempo zero em microconcretos de alta resistência contendo polímeros superabsorventes usando a técnica do ultrassom. In Anais do 57º Congresso Brasileiro do Concreto (CBC2015). IBRACON. [Google Scholar]
- Jones, R., & Fącąoaru, I. (1969). Recommendations for testing concrete by the ultrasonic pulse method. Matériaux et constructions, 2, 275-284 [CrossRef] [Google Scholar]
- RILEM TC. (1972). NDT 1 Testing of concrete by the ultrasonic pulse method. In RILEM (Ed.), RILEM Recommendations for the Testing and Use of Construction Materials (pp. 73-82). E & FN SPON. https://doi.org/10.1617/2351580117.029 [Google Scholar]
- Associação Brasileira de Normas Técnicas. (2013). NBR 8802: Concreto endurecido – Determinação da velocidade de propagação da onda ultrassônica. ABNT. [Google Scholar]
- Santos, T. A. C. (2016). Estudo da adição de polímero superabsorvente e de nano partículas de sílica para melhorar propriedades de concretos de alta resistência. [Google Scholar]
- ASTM C1698-19 (2019) Standard test method for autogenous strain of cement paste and mortar. ASTM International. West Conshohocken, PA, USA [Google Scholar]
- Mehta P, Monteiro P (2014) Concrete microstructure, properties, and materials. McGraw-Hill Education, New York [Google Scholar]
- Beaudoin J, Odler I (2019) Hydration, setting and hardening of portland cement. In: Hewlett P, Liska M (eds) Lea’s chemistry of cement and concrete. Butterworth-Heinemann, Oxford, UK, pp 157–250 [CrossRef] [Google Scholar]
- Choi H, Song H, Tran Q, Roesler J, Popovics J (2016) Contactless system for continuous monitoring of early-age concrete properties. Concr Int 38(9):35–41 [Google Scholar]
- ASTM C191-21 (2021) Standard test methods for time of setting of hydraulic cement by Vicat needle. ASTM International. West Conshohocken, PA, USA [Google Scholar]
- ASTM C403/C403M-08 (2023) Standard test method for time of setting of concrete mixtures by penetration resistance. ASTM International. West Conshohocken, PA, USA [Google Scholar]
- Bentz D, Peltz M, Winpigler J (2009) Early-age properties of cement-based materials II: infuence of water-to-cement ratio. J Mater Civ Eng 21(9):512–517. https://doi.org/10.1061/(ASCE)0899-1561(2009)21:9(512) [CrossRef] [Google Scholar]
- AASHTO T 197M/T 197 (2023) Time of setting of concrete mixtures by penetration resistance. American Association of State Highway and Transportation Ofcials, Washington, DC, USA [Google Scholar]
- Lura P, Jensen O, Van Breugel K (2003) Autogenous shrinkage in high-performance cement paste: an evaluation of basic mechanisms. Cem Concr Res 33(2):223–232. https://doi.org/10.1016/S0008-8846(02)00890-6. [CrossRef] [Google Scholar]
- G Sant, P Lura, J Weiss. (2006) A discussion on analysis approaches for determining ‘time-zero’ from chemical shrinkage and autogenous strain measurements in cement paste. International RILEM conference on volume changes of hardening concrete: testing and mitigation, Lyngby, Denmark [Google Scholar]
- Meddah M, Arezki T (2011) Evaluation of rate of deformation for early-age concrete shrinkage analysis and time zero determination. J Mater Civ Eng 23(7):1076–1086. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000261 [CrossRef] [Google Scholar]
- Tenório Filho J, Gomes de Araújo M, Snoeck D, De Belie N (2019) Discussing diferent approaches for the time zero as start for autogenous shrinkage in cement pastes containing superabsorbent polymers. Mater 12(18):2962. https://doi.org/10.3390/ma12182962 [CrossRef] [Google Scholar]
- Lyu Y (2017) Autogenous shrinkage of cement-based materials: from the fundamental role of self-desiccation to mitigation strategies based on alternative materials Dissertation. Ghent University, Ghent, Belgium [Google Scholar]
- Wyrzykowski M, Hu Z, Ghourchian S, Scrivener K, Lura P (2017) Corrugated tube protocol for autogenous shrinkage measurements: review and statistical assessment. Mater Struct 50:1–14. https://doi.org/10.1617/s11527-016-0933-2 [CrossRef] [Google Scholar]
- Huang H, Ye G (2017) Examining the “time-zero” of autogenous shrinkage in high/ultra-high performance cement pastes. Cem Concr Res 97:107–114. https://doi.org/10.1016/j.cemconres.2017.03.010 [CrossRef] [Google Scholar]
- NP, EN 196-2 (2006) - Metodos de Ensaio de Cimentos. Parte 2: Analise química de cimentos, Instituto Portugues da Qualidade, Caparica, Portugal [Google Scholar]
- Jensen, O. M.; Hansen, P. F. (2001) Water-entrained cement-based materials I. Principles and theoretical background, Cem. Concr. Res. 31, 647–654 [CrossRef] [Google Scholar]
- Rojas Manzano, M. A. (2016). Estudo experimental de materiais cimentícios de alta resistência modificados com polímeros superabsorventes (PSAS) como agentes de cura interna (Tese de doutorado, Universidade de Brasília). Universidade de Brasília. [Google Scholar]
- MONNIG, S. (2009) Superabsorbing additions in concrete: applications, modeling and comparison of different internal water sources. PhD Thesis, University of Stuttgart, Germany. [Google Scholar]
- Reis, P. (2019). Efeito do polímero super absorvente e de nano partículas de sílica na viscoelasticidade e retração de materiais cimentícios como uma resposta poroviscoelástica. 2019.xxv, 192 f., il. Tese (Doutorado em Estruturas e Construção Civil) — Universidade de Brasília, Brasília. [Google Scholar]
- Palma e Silva, A. A. P., Capuzzo, V. M. S., Silva, E. F., Pereira, A. M. B., & e Silva, D. A. P. (2022). Evaluation of mechanical properties and microstructure of high-performance mortars with superabsorbent polymers and metakaolin by means of X-ray computed microtomography. Journal of Building Engineering, 51, 104219. [CrossRef] [Google Scholar]
- Reinhardt, H. -W. and Assmann, A., “Effect of Superabsorbent Polymers on Durability of Concrete,” Application of Superabsorbent Polymers (SAP) in Concrete Construction, State of the Art Report Prepared by RILEM Technical Committee 225-SAP, Mechtcherine and V. Reinhard H. -W. , Eds., Springer, Heidelberg-Berlin, 2012, pp. 115–136. [Google Scholar]
- BSI, E. (2005). EN 196-3: 2005+ A1: 2008. ‘Methods of testing cement. Determination of setting times and soundness’. [Google Scholar]
- ASTM International. (2014). ASTM C1698-09 (2014), Standard Test Method for Autogenous Strain of Cement Paste and Mortar. West Conshohocken, PA: ASTM International. [Google Scholar]
- Bettencourt, A.; Gonçalves, A. (2010) Autogenous shrinkage measurements on cement pastes: influence of w/c, cement fineness, C3A content, and superplasticizer dosage. Relatório 431/2010 – NB, LNEC, Lisboa, 2010. [Google Scholar]
- Agostinho, L. B., Borges, J. G., Silva, E. F. D., & Cupertino, D. V. M. R. (2020). Análise calorimétrica de pastas de cimento Portland contendo polímero superabsorvente (SAP) e nanopartículas de sílica (NS). Matéria (Rio de Janeiro), 25(04), e-12860. [Google Scholar]
- Siriwatwechakul, W., Siramanont, J., & Vichit-Vadakan, W. (2012). Behavior of superabsorbent polymers in calcium- and sodium-rich solutions. Journal of Materials in Civil Engineering, 24(8), 976–980. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.