Open Access
Issue |
MATEC Web Conf.
Volume 406, 2024
2024 RAPDASA-RobMech-PRASA-AMI Conference: Unlocking Advanced Manufacturing - The 25th Annual International RAPDASA Conference, joined by RobMech, PRASA and AMI, hosted by Stellenbosch University and Nelson Mandela University
|
|
---|---|---|
Article Number | 07009 | |
Number of page(s) | 12 | |
Section | AM Material and Part Characterisation | |
DOI | https://doi.org/10.1051/matecconf/202440607009 | |
Published online | 09 December 2024 |
- W.E. King, A.T. Anderson, R.M. Ferencz, N.E. Hodge, C. Kamath, S.A. Khairallah, and A.M. Rubenchik. Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges. App Phy Rev, 2(4), pp 1-27, (2015). [Google Scholar]
- H.L. Wei, Y. Cao, W.H. Liao, and T.T Liu 2020. Mechanisms on inter-track void formation and phase transformation during laser powder bed fusion of Ti-6Al- 4V. Add Man, 34, pp.101221-101237, (2020). [Google Scholar]
- K. Raut, A.K Ball, and A. Basak, A. Impact of track length, track shape, and track location on thermal distortion in laser powder bed fusion of IN625: Single laser vs. three lasers. J of Eng Res, pp 1-16, (2023). [Google Scholar]
- T. Nakano and T. Ishimoto. Powder-based additive manufacturing for development of tailor-made implants for orthopedic applications. KONA Powder and Particle Journal, 32, pp.75-84, (2015). [CrossRef] [Google Scholar]
- A. Nouri, A.R. Shirvan, Y. Li, and C. Wen, C. Additive manufacturing of metallic and polymeric load-bearing biomaterials using laser powder bed fusion: A review. J of Mat Sci & Tech, 94, pp.196-215, (2021). [CrossRef] [Google Scholar]
- E. Zhang, F. Li, H. Wang, J. Liu, C. Wang, M. Li, K. Yang. A new antibacterial titanium–copper sintered alloy: preparation and antibacterial property. Mat. Sci. Eng. C, 33 (7), pp. 4280-4287, (2013). [CrossRef] [Google Scholar]
- L. Spotose. Identifying Ti-Cu-based alloys for biomedical applications, MSc dissertation, University of the Witwatersrand, (2023). [Google Scholar]
- N.S. Phala, C. Polese, T. Choma, H. Möller, Ł. Żrodowski, and L.A. Cornish. Atomisation of Ti-6Ta-1.5 Zr-0.2 Ru-5Cu (wt%) for additive manufacturing for biomedical applications. In MATEC Web of Conferences (Vol. 388, p. 08003). EDP Sciences, (2023). [CrossRef] [EDP Sciences] [Google Scholar]
- A. Carrozza, F. Mazzucato, A. Aversa, M. Lombardi, F Bondioli, S. Biamino, A. Valente, and P. Fino. Single scans of Ti-6Al-4V by directed energy deposition: a cost and time effective methodology to assess the proper process window. Met and Mat Int, pp.1-13, (2021). [Google Scholar]
- D. Svetlizky, B. Zheng, D.M. Steinberg, J.M. Schoenung,E.J. Lavernia, and N. Eliaz. The influence of laser directed energy deposition (DED) processing parameters for Al5083 studied by central composite design. J of Mat Res and Tech, 17, pp.3157-3171, (2022). [CrossRef] [Google Scholar]
- B. Blakey-Milner, P. Gradl, G. Snedden, M. Brooks, J. Pitot, E. Lopez, M.F. Leary,. Berto and A. Du Plessis. Metal additive manufacturing in aerospace: A review. Mat & Des, 209, pp.110008-110048, (2021). [Google Scholar]
- A. Gonnabattula, R.S. Thanumoorthy, S. Bontha, A.A.S. Balan, V.A. Kumar, and A.K. Kanjarla. Process parameter optimization for laser directed energy deposition (LDED) of Ti6Al4V using single-track experiments with small laser spot size. Optics & Laser Tech, 175, pp.110861-110873, (2024). [CrossRef] [Google Scholar]
- D.D. Gu, W. Meiners, K. Wissenbach, and R. Poprawe. Laser additive manufacturing of metallic components: materials, processes and mechanisms. Int Mat Rev, 57(3), pp.133-164, (2012). [CrossRef] [Google Scholar]
- D. Dai, D. Gu, Q. Ge, Y. Li, X. Shi, Y. Sun, and S. Li, S., 2020. Mesoscopic study of thermal behaviour, fluid dynamics and surface morphology during selective laser melting of Ti-based composites. Comp Mat Sci, 177, pp.109598-109609, (2020). [CrossRef] [Google Scholar]
- J Sun, M. Guo, K. Shi, and D. Gu. Influence of powder morphology on laser absorption behaviour and printability of nanoparticle-coated 90W-Ni-Fe powder during laser powder bed fusion. Mat Sci in Add Man, 1(2), pp.11-24, (2022). [CrossRef] [Google Scholar]
- P. Gao, Z. Wang, and X. Zeng. Effect of process parameters on morphology, sectional characteristics and crack sensitivity of Ti-40Al-9V-0.5 Y alloy single tracks produced by selective laser melting. Int J of Light Mat and Man, 2(4), pp.355-361, (2019). [Google Scholar]
- J. Robinson, M. Stanford, and A. Arjunan. Stable formation of powder bed laser fused 99.9% silver. Mat Today Com, 24, pp.101195-101208, (2020). [CrossRef] [Google Scholar]
- Y. Guo, J.I.A. Lina, B Kong, N.A. Wang, and H. Zhang. Single track and single layer formation in selective laser melting of niobium solid solution alloy. Chin J of Aer, 31(4), pp.860-866, (2018). [CrossRef] [Google Scholar]
- Y. Liu, J. Li, K. Xu, T. Cheng, D. Zhao, W. Li, Q. Teng, and Q. Wei, Q., 2022. An optimized scanning strategy to mitigate excessive heat accumulation caused by short scanning lines in laser powder bed fusion process. Add Man, 60, pp.103256-103268, (2022). [Google Scholar]
- I. Yadroitsev, and I. Yadroitsava. A step-by-step guide to the L-PBF process. In Fundamentals of laser powder bed fusion of metals (pp. 39-77). Elsevier, (2021). [Google Scholar]
- P. Canale and C. Servant. Thermodynamic assessment of the Cu–Ti system taking into account the new stable phase CuTi3. Inter J of Mat Res, 93(4), pp.273-276, (2022). [Google Scholar]
- L. Fowler. Development of titanium-copper alloys for dental applications (Doctoral dissertation, Acta Universitatis Uppsaliensis), (2019). [Google Scholar]
- K. Dyal Ukabhai, U.A Curle, N.D.E. Masia, M. Smit, I.A. Mwamba, S. Norgren, C. Öhman-Mägi, N.G. Hashe, and L.A. Cornish. Formation of Ti2Cu in Ti-Cu alloys, J. Phase Equil and Dif, 43, pp. 332-344, (2022). [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.