Open Access
Issue
MATEC Web Conf.
Volume 406, 2024
2024 RAPDASA-RobMech-PRASA-AMI Conference: Unlocking Advanced Manufacturing - The 25th Annual International RAPDASA Conference, joined by RobMech, PRASA and AMI, hosted by Stellenbosch University and Nelson Mandela University
Article Number 07008
Number of page(s) 11
Section AM Material and Part Characterisation
DOI https://doi.org/10.1051/matecconf/202440607008
Published online 09 December 2024
  1. N.T. Aboulkhair, M. Simonelli, L. Parry, I. Ashcroft, C. Tuck, R. Hague, 3D printing of Aluminium alloys: Additive Manufacturing of Aluminium alloys using selective laser melting, Progress in materials science 106 (2019). [Google Scholar]
  2. S.T. Olohunde, A.M. Hafizi, I. Jamaliah, A.A. Al-Bakoosh, O.O. Segun, I.O. Sadiq, Corrosion Resistance of Aluminium–Silicon Hypereutectic Alloy from Scrap Metal, Journal of Bio- and Tribo-Corrosion 5(2) 41, (2019). [CrossRef] [Google Scholar]
  3. A. Boschetto, L. Bottini, F. Veniali, Roughness modeling of AlSi10Mg parts fabricated by selective laser melting, Journal of Materials Processing Technology. 241,154-163 (2017). [CrossRef] [Google Scholar]
  4. E.O. Olakanmi, R. Cochrane, K. Dalgarno, A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: Processing, microstructure, and properties, Progress in Materials Science 74, 401-477 (2015). [CrossRef] [Google Scholar]
  5. E. Yasa, Chapter 3 - Selective laser melting: principles and surface quality, in: J. Pou, A. Riveiro, J.P. Davim (Eds.), Additive Manufacturing, Elsevier 2021, pp. 77-120. [CrossRef] [Google Scholar]
  6. D. Greitemeier, F. Palm, F. Syassen, T. Melz, Fatigue performance of additive manufactured TiAl6V4 using electron and laser beam melting, International Journal of Fatigue 94 (2017) . [Google Scholar]
  7. A. Leon, E. Aghion, Effect of surface roughness on corrosion fatigue performance of AlSi10Mg alloy produced by Selective Laser Melting (SLM), Materials Characterization 131 (2017). [Google Scholar]
  8. N.E. Uzan, R. Shneck, O. Yeheskel, N. Frage, Fatigue of AlSi10Mg specimens fabricated by additive manufacturing selective laser melting (AM-SLM), Materials Science and Engineering: A 704 (2017). [Google Scholar]
  9. T. Yang, T. Liu, W. Liao, E. MacDonald, H. Wei, X. Chen, L. Jiang, The influence of process parameters on vertical surface roughness of the AlSi10Mg parts fabricated by selective laser melting, Journal of Materials Processing Technology 266 (2019) [CrossRef] [Google Scholar]
  10. J. Sun, Y. Yang, Z. Yang, Study on surface roughness of selective laser melting Ti6Al4V based on powder characteristics, Zhongguo Jiguang/Chinese J. Lasers 43 (2016) [Google Scholar]
  11. B. Van Hooreweder, K. Lietaert, B. Neirinck, N. Lippiatt, M. Wevers, CoCr F75 scaffolds produced by additive manufacturing: Influence of chemical etching on powder removal and mechanical performance, Journal of the Mechanical Behavior of Biomedical Materials 68 (2017). [Google Scholar]
  12. V. Urlea, V. Brailovski, Electropolishing and electropolishing-related allowances for powder bed selectively laser-melted Ti-6Al-4V alloy components, Journal of Materials Processing Technology 242 (2017). [CrossRef] [Google Scholar]
  13. A. Mohammad, M.K. Mohammed, A.M. Alahmari, Effect of laser ablation parameters on surface improvement of electron beam melted parts, The International Journal of Advanced Manufacturing Technology 87 (2016). [Google Scholar]
  14. B. AlMangour, J.-M. Yang, Improving the surface quality and mechanical properties by shot-peening of 17-4 stainless steel fabricated by additive manufacturing, Materials & Design 110 (2016). [Google Scholar]
  15. K.L. Tan, S.H. Yeo, Surface modification of additive manufactured components by ultrasonic cavitation abrasive finishing, Wear 378 (2017). [Google Scholar]
  16. A.W. Hashmi, H.S. Mali, A. Meena, M.F. Hashmi, N.D. Bokde, Surface Characteristics Measurement Using Computer Vision: A Review, CMES-Computer Modeling in Engineering & Sciences 135(2) (2023). [Google Scholar]
  17. D. Modupeola, P. Patricia, Surface Roughness Measurements of Laser Deposited AlCoCrFeNiTi and AlCoCrFeNiCu High Entropy Alloys for Aerospace Applications, TMS 2023 152nd Annual Meeting & Exhibition Supplemental Proceedings, Springer Nature Switzerland, Cham, (2023). [Google Scholar]
  18. Z. Liu, S. Liu, Y. Li, P.A. Meehan, Modeling and optimization of surface roughness in incremental sheet forming using a multi-objective function, Materials and Manufacturing Processes 29, 7, (2014) [Google Scholar]
  19. S. Lee, B. Rasoolian, D.F. Silva, J.W. Pegues, N. Shamsaei, Surface roughness parameter and modeling for fatigue behavior of additive manufactured parts: A non- destructive data-driven approach, Additive Manufacturing 46 (2021). [Google Scholar]
  20. B.J. Mfusi, N.R. Mathe, N.W. Makoana, P. Popoola, Optimization of surface modification for additively manufactured AlSi10Mg using a vibratory polishing surface finisher, (2022). [Google Scholar]
  21. M. Butt, D. Ali, M. Aftab, M.U. Tanveer, Surface topography and structure of laser- treated high-purity zinc, Surface Topography: Metrology and Properties 3, 3 (2015). [Google Scholar]
  22. W. Li, C. Wang, Z. Shi, Y. Wei, H. Zhou, K. Deng, The description of shale reservoir pore structure based on method of moments estimation, PloS one 11(3) (2016) e0151631. [Google Scholar]
  23. Y. Hao, S. Yang, X. Li, W. Li, X. Wang, Analysis of contact force characteristics of vibratory finishing within pipe-cavity, Granular Matter 23 (2021). [Google Scholar]
  24. S.R. Yadhuraj, G. Satheesh Babu, M. Uttara Kumari, Measurement of thickness and roughness using gwyddion, 2016 3rd International Conference on Advanced Computing and Communication Systems (ICACCS), (2016). [Google Scholar]
  25. F. Saraiva, P. Neves, C. Pires, J.A. Sousa, A novel traceability route to the SI in roughness measurements at IPQ, Acta IMEKO 12, 3 (2023). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.