Open Access
Issue
MATEC Web Conf.
Volume 406, 2024
2024 RAPDASA-RobMech-PRASA-AMI Conference: Unlocking Advanced Manufacturing - The 25th Annual International RAPDASA Conference, joined by RobMech, PRASA and AMI, hosted by Stellenbosch University and Nelson Mandela University
Article Number 06005
Number of page(s) 9
Section Computational & Data-driven Modelling
DOI https://doi.org/10.1051/matecconf/202440606005
Published online 09 December 2024
  1. O.F. Ogunbiyi, T. Jamiru, E.R. Sadiku, O.T. Adesina, S.A. Salifu, L.W. Beneke,: Conf. South African Adv. Mater. Initiat., https://doi.org/10.1088/1757- 899X/655/1/012031. (2019). [Google Scholar]
  2. S.H. Kim, G.H. Shin, B.K. Kim, K.T. Kim, D.Y. Yang, C. Aranas, J.P. Choi, J.H. Yu, Sci. Rep. 7 1–14. https://doi.org/10.1038/s41598-017-14713-1. (2017). [CrossRef] [Google Scholar]
  3. M. Tsai, J. Yeh, M. Tsai, J. Yeh, Mater. Res. Lett. 2 107–123. https://doi.org/10.1080/21663831.2014.912690. (2014). [CrossRef] [Google Scholar]
  4. Ł. Rogal, Z. Szklarz, P. Bobrowski, D. Kalita, G. Garzeł, A. Tarasek, M. Kot, M. Szlezynger, Met. Mater. Int. 25 930–945. https://doi.org/10.1007/s12540-018-00236-5. (2019). [CrossRef] [Google Scholar]
  5. J.M. Torralba, P. Alvaredo, A. García-Junceda, Powder Metall. 62 84–114. https://doi.org/10.1080/00325899.2019.1584454. (2019) [CrossRef] [Google Scholar]
  6. S. Guo, Q. Hu, C. Ng, C.T. Liu, Intermetallics. 41 96–103. https://doi.org/10.1016/j.intermet.2013.05.002. (2013) [CrossRef] [Google Scholar]
  7. J. Yuan, X. Zhang, B. Li, X. Wang, K. Sun, J. Alloys Compd. 693 70–75. https://doi.org/10.1016/j.jallcom.2016.09.022. (2017). [CrossRef] [Google Scholar]
  8. F. Tian, L.K. Varga, N. Chen, J. Shen, L. Vitos, Intermetallics. 58 1–6. https://doi.org/10.1016/j.intermet.2014.10.010. (2015). [CrossRef] [Google Scholar]
  9. X. Yang, Y. Zhang, Mater. Chem. Phys. 132 233–238. https://doi.org/10.1016/j.matchemphys.2011.11.021. (2012). [CrossRef] [Google Scholar]
  10. M.C.G.J. Yeh, P.K. Liaw, Y. Zhang, Springer International Publishing, Switzerland, https://doi.org/10.1007/978-3-319-27013-5. (2016). [Google Scholar]
  11. R. Rawat, B.K. Singh, A. Tiwari, N. Arun, A.P. Pathak, Y. Shadangi, N.K. Mukhopadhyay, S.R. Nelamarri, S.V. Rao, A. Tripathi, J. Alloys Compd. 927 166905. https://doi.org/10.1016/j.jallcom.2022.166905. (2022). [CrossRef] [Google Scholar]
  12. L. Tian, M. Fu, W. Xiong,, Materials (Basel). 11 320. https://doi.org/10.3390/ma11020320. (2018). [CrossRef] [Google Scholar]
  13. M. Zhang, Y. Peng, W. Zhang, Y. Liu, L. Wang, S. Hu, Y. Hu, Materials (Basel). 9 351. https://doi.org/10.3390/met9030351. (2019). [CrossRef] [Google Scholar]
  14. M. Zeraati, M. Hossein, K. Feizabad, G.R. Khayati, J. Alloys Compd. 170347. https://doi.org/10.1016/j.jallcom. (2023). [Google Scholar]
  15. H.L. Lukas, S.G. Fries, B. Sundman, Thermodyn. Calphad Method. 9780521868 1–313. https://doi.org/10.1017/CBO9780511804137. (2007). [Google Scholar]
  16. M.C. Gao, Fundam. Appl. 369–398. (2016). [Google Scholar]
  17. U.S. Anamu, O.O. Ayodele, E. Olorundaisi, B.J. Babalola, P.I. Odetola, A. Ogunmefun, K. Ukoba, T.-C. Jen, P.A. Olubambi, J. Mater. Res. Technol. 27 4833–4860. https://doi.org/10.1016/j.jmrt.2023.11.008. (2023). [CrossRef] [Google Scholar]
  18. O.N. Senkov, D.B. Miracle, J. Alloys Compd. 658 603–607. https://doi.org/10.1016/j.jallcom.2015.10.279. (2016). [CrossRef] [Google Scholar]
  19. Y. Tang, W. Li, C. Li, S. Lu, L. Vitos, F. Pyczak, Mater. Trans. A. 54 1635–1648. https://doi.org/10.1007/s11661-022-06891-z. (2023). [CrossRef] [Google Scholar]
  20. C. Zhang, F. Zhang, S. Chen, W. Cao, JOM. 64 839–845. https://doi.org/10.1007/s11837-012-0365-6. (2012). [CrossRef] [Google Scholar]
  21. C. Zhang, M.C. Gao, High-Entropy Alloy. Fundam. Appl. 399–444. (2016). [Google Scholar]
  22. K. Shobu, CaTCalc: New thermodynamic equilibrium calculation software, Calphad. 33 279–287. (2009). [Google Scholar]
  23. G. Eriksson, Chem. Scr. 8 100–103. (1975). [Google Scholar]
  24. J.L. Estrada, V.M. Carreño, H. Balmori, J. Duszczyk, Technol., CRC Press,: pp. 277–284. (2020). [Google Scholar]
  25. H.L. Lukas, E.-T.. Henig, B. Zimmermann, CALPHAD. 1 225–236. (1977). [CrossRef] [Google Scholar]
  26. W., Cao, S.-L., Chen, F., Zhang, K., Wu, Y., Yang, Y.A., Chang, W.A.S.-F. R., Oates, Thermochem. 33 328–342. https://doi.org/10.1016/j.calphad.2008.08.004. (2009). [Google Scholar]
  27. P., Shi, A., Engström, B., Sundman, J. Ågren, Mater. Sci. Forum. 675 677 961– 974. https://doi.org/10.4028/www.scientific.net/MSF.675-677.961. (2011). [Google Scholar]
  28. S.R. Oke, O.E. Falodun, A. Bayode, U.S. Anamu, P.A. Olubambi, J. Alloys Compd. 968 172030. https://doi.org/10.1016/j.jallcom.2023.172030. (2023). [CrossRef] [Google Scholar]
  29. E., Kozeschnik, B. Buchmayr, Phenom. 5, [Int. Semin. Numer. Anal. Weldability], 5th. 5 349–361. (2001). [Google Scholar]
  30. R.H., Davies, A.T., Dinsdale, J.A., Gisby, J.A.J., Robinson, S.M. Martin, Thermochem. 26 229–271. https://doi.org/10.1016/S0364-5916(02)00036-6. (2002). [Google Scholar]
  31. C.W., Bale, E., Bélisle, P., Chartrand, S.A., Decterov, G., Eriksson, K., Hack, I.-H., Jung, Y.B., Kang, J., Melançon, A.D., Pelton, C., Robelin, S. Petersen, Thermochem. 54 35–53. https://doi.org/10.1016/j.calphad.2016.05.002. (2016). [Google Scholar]
  32. Y. Lin, A. Saboo, R. Frey, S. Sorkin, J. Gong, G.B. Olson, M. Li, C. Niu, , Jom. 73 116–125. https://doi.org/10.1007/s11837-020-04405-z. (2021). [CrossRef] [Google Scholar]
  33. H. Mao, H. Chen, C. Qing,, J. Phase Equilibria Diffus. 38 353–368. https://doi.org/10.1007/s11669-017-0570-7. (2017). [CrossRef] [Google Scholar]
  34. O. Emmanuel, B.J. Babalola, M.L. Teffo, P.A. Olubambi, Mater. Sci. Forum. 1116 59–70. https://doi.org/10.4028/p-4Mp8T4. (2024). [CrossRef] [Google Scholar]
  35. C. Xia, X. Li, Y. Liu, T. Song, S. Liu, B. Chen, Mater. Charact. 203 113067. https://doi.org/10.1016/j.matchar.2023.113067. (2023). [CrossRef] [Google Scholar]
  36. Y. Zhang, H. Wu, X. Yu, D. Tang, Corros. Sci. 200 110211. https://doi.org/10.1016/j.corsci. (2022). [CrossRef] [Google Scholar]
  37. M.G. Sanjay Kumar Thakur, Compos. Part A Appl. Sci. Manuf. 38 1010–1018. https://doi.org/10.1016/j.compositesa.2006.06.014. (2007). [CrossRef] [Google Scholar]
  38. Z.W. and S.B. Bin Zhang, Yu Tang, Shun Li, Yicong Ye, Li’an Zhu, Zhouran Zhang, Xiyue Liu, Entropy. 23 1632. https://doi.org/https://doi.org/10.3390/ e23121632 Academic. (2021). [CrossRef] [Google Scholar]
  39. P. Martin, C.E. Madrid-Cortes, C. Cáceres, N. Araya, C. Aguilar, J.M. Cabrera, , Comput. Phys. Commun. 278 108398. https://doi.org/10.1016/j.cpc. (2022). [CrossRef] [Google Scholar]
  40. P. Mikolajczak, A. Genau, J. Janiszewski, L. Ratke, Metals (Basel). 7 1–21. https://doi.org/10.3390/met7110506. (2017). [Google Scholar]
  41. Y. Chen, B. Xie, B. Liu, Y. Cao, J. Li, Q. Fang, P.K. Liaw, Front. Mater. 8 1–23. https://doi.org/10.3389/fmats.2021.816309. (2022). [Google Scholar]
  42. N. Singh, Y. Shadangi, N.K. Mukhopadhyay, Trans. Indian Inst. Met. 73 2377–2386. https://doi.org/10.1007/s12666-020-02039-y. (2020). [CrossRef] [Google Scholar]
  43. M. Kök, S.B. Durğun, E. Özen, J. Therm. Anal. Calorim. 136 1147–1152. https://doi.org/10.1007/s10973-018-7823-5. (2019). [CrossRef] [Google Scholar]
  44. J. Liu, X. Wang, A.P. Singh, H. Xu, F. Kong, F. Yang, Metals (Basel). 11 https://doi.org/10.3390/met11122054. (2021). [Google Scholar]
  45. S. Mahmood Shah, N. Ullah, B. Ullah, M. Shehzad Khan, T. Usman, J. Heterocycl. 1 35–38. https://doi.org/10.33805/2639-6734.102. (2018). [CrossRef] [Google Scholar]
  46. N. Riel, B. Kaus, N. Berlie, L. Rummel, E. Green, (2022) 11861. [Google Scholar]
  47. P. Hyjek, M. Stępień, R. Kowalik, I. Sulima, Materials (Basel). 16. https://doi.org/10.3390/ma16051907. (2023). [CrossRef] [Google Scholar]
  48. H. Liu, L. Yu, X. Xiao, Crystals. 10 1–10. https://doi.org/10.3390/cryst10020112. (2020). [Google Scholar]
  49. M.D. Gholami, R. Hashemi, M. Sedighi, J. Mater. Res. Technol. 9 1831–1846. https://doi.org/10.1016/j.jmrt.2019.12.016. (2020). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.