Open Access
Issue |
MATEC Web Conf.
Volume 406, 2024
2024 RAPDASA-RobMech-PRASA-AMI Conference: Unlocking Advanced Manufacturing - The 25th Annual International RAPDASA Conference, joined by RobMech, PRASA and AMI, hosted by Stellenbosch University and Nelson Mandela University
|
|
---|---|---|
Article Number | 05005 | |
Number of page(s) | 18 | |
Section | Process Development | |
DOI | https://doi.org/10.1051/matecconf/202440605005 | |
Published online | 09 December 2024 |
- M. Crago, A. Lee, S. Farajikhah, F, Oveissi, D.F. Fletcher, F. Dehghani, D.S. Winlaw, S. Naficy, The evolution of polyurethane heart valve replacements: How chemistry translates to the clinic,” Mater. Today Commun., 33, (2022) [Google Scholar]
- H. Ghanbari, H. Viatge, A. G. Kidane, G. Burriesci, M. Tavakoli, and A. M. Seifalian, Polymeric heart valves: new materials, emerging hopes, Trends Biotechnol., 27, 6, 359–367, (2009) [CrossRef] [Google Scholar]
- D. Bezuidenhout, D. F. Williams, and P. Zilla, Biomaterials Polymeric heart valves for surgical implantation , catheter-based technologies and heart assist devices, Biomaterials, 36, 6–25, (2015) [CrossRef] [Google Scholar]
- R. Masheane, J. Combrinck, and L. Masheane, Development of a compression moulding process for the manufacturing of artificial polymer heart valves, MATEC Web Conf., 388, 06002, (2023) [CrossRef] [EDP Sciences] [Google Scholar]
- M. Fukui, P. Sorajja, J.L Cavalcante, K.R. Thao, A. Okada, H. Sato, C. Wang, H. Koike, N. Hamid,M. Enriquez-Sarano, J. R. Lesser, V. Bapat, , Deformation of Transcatheter Heart Valve Following Valve-in-Valve Transcatheter Aortic Valve Replacement: Implications for Hemodynamics, JACC Cardiovasc. Interv., 16, 5, 515–526, (2023) [CrossRef] [Google Scholar]
- D. Bezuidenhout, D. F. Williams, and P. Zilla, Polymeric heart valves for surgical implantation, catheter-based technologies and heart assist devices, Biomaterials, 36, 6–25, (2015) [CrossRef] [Google Scholar]
- R.L. Li, J. Russ, C. Paschalides, G. Ferrari, H. Waisman, J. W. Kysar, D. Kalfa, Mechanical considerations for polymeric heart valve development: Biomechanics, materials, design and manufacturing, Biomaterials, 225, 119493, (2019) [CrossRef] [Google Scholar]
- P. Boloori-zadeh, S. C. Corbett, and H. Nayeb-Hashemi, Effects of fluid flow shear rate and surface roughness on the calcification of polymeric heart valve leaflet, Mater. Sci. Eng. C, 33, 5, 2770–2775, (2013). [CrossRef] [Google Scholar]
- J. Zhou, Y. Li, T. Li, X. Tian, Y. Xiong, and Y. Chen, Analysis of the Effect of Thickness on the Performance of Polymeric Heart Valves, J. Funct. Biomater., 14, 6, (2023). [Google Scholar]
- Y. Yamamoto, M. Yamagishi, and T. Miyazaki, Congenital : Tetralogy of fallot Modification of expanded polytetrafluoroethylene valved conduit using the thin-type leaflets, J. Thorac. Cardiovasc. Surg., 156, 4, 1629-1636, (2013) [Google Scholar]
- G. M. Bernacca, B. O’Connor, D. F. Williams, and D. J. Wheatley, Hydrodynamic function of polyurethane prosthetic heart valves: Influences of Young’s modulus and leaflet thickness, Biomaterials, 23, 1, 45–50, (2002) [CrossRef] [Google Scholar]
- B. Rahmani, S. Tzamtzis, H. Ghanbari, G. Burriesci, and A. M. Seifalian, Manufacturing and hydrodynamic assessment of a novel aortic valve made of a new nanocomposite polymer, J. Biomech., 45, 7, 1205–1211, (2012) [CrossRef] [Google Scholar]
- L. Masheane, W.B. du Preez, and J. Combrinck, Analysis of the influence of belly and free edge curves on the hemodynamic performance of a polymer heart valve, (to be published) [Google Scholar]
- L. Masheane, W.B. du Preez, and J. Combrinck, assessment of manufacturability and performance of polyurethane heart valves produced through a locally developed dip moulding process,” in Proceedings of 17th RAPDASA Annual International Conference, 5–37, (2016) [Google Scholar]
- W. D. Lestari, D. K. Nababan, R. Ismail, J. Jamari, and A. P. Bayuseno, Dimensional accuracy and surface roughness of acetabular liner with UHMWPE: Assessment results between compression molding and CNC milling, Int. Rev. Mech. Eng., 12, 6, 516–521, (2018) [Google Scholar]
- S. S. Nogueira, R. E. Ogle, and E. L. Davis, Comparison of accuracy between compression- and injection-molded complete dentures., J. Prosthet. Dent., 82, 3, 291–300, (1999) [CrossRef] [Google Scholar]
- S. Syahirah, N. Hazwani, M. Farhan, S. Atikah, and A. F. Mansor, design and development of heating press system for compression molding part 2. 2016. [Google Scholar]
- F. Oveissi, S. Naficy, A. Lee, D. S. Winlaw, and F. Dehghani, Materials and manufacturing perspectives in engineering heart valves: a review, Mater. Today Bio, 5, 100038, (2020) [CrossRef] [Google Scholar]
- P. Lancellotti, A. Aqil, L. Musumeci, N. Jacques, B. Ditkowski, M. Debuisson, M. Thiry, J. Dupont, A. Gougnard, C. Sandersen, J.P. Cheramy-Bien, N. Sakalihasan, A. Nchimi, C. Detrembleur, C. Jérôme, C. Oury, Bioactive surface coating for preventing mechanical heart valve thrombosis, J. Thromb. Haemost., 21, 9, 2485–2498, 2023. [CrossRef] [Google Scholar]
- F. Dehghani, M. T. Khorasani, and M. Movahedi, Fabrication of polyurethane – Heparinized carbon nanotubes composite for heart valves application, Mater. Chem. Phys., 280, (2021) [Google Scholar]
- P. Boloori Zadeh, S. C. Corbett, and H. Nayeb-Hashemi, In-vitro calcification study of polyurethane heart valves, Mater. Sci. Eng. C, 35, 1, 335–340, (2014) [CrossRef] [Google Scholar]
- A. G. Kidane, G. Burriesci, M. Edirisinghe, H. Ghanbari, P. Bonhoeffer, and A. M. Seifalian, A novel nanocomposite polymer for development of synthetic heart valve leaflets, Acta Biomater., 5, 7, 2409–2417, (2009) [CrossRef] [Google Scholar]
- S. Yousefi, H. Borna, A. Rohani Shirvan, C. Wen, and A. Nouri, Surface modification of mechanical heart valves: A review, Eur. Polym. J., 205, 112726, (2024) [CrossRef] [Google Scholar]
- S. Points, An international organization for standardization, Science (80-. )., 63, 1639,539–539, (1926) [Google Scholar]
- P. Lancellotti, A. Aqil, L. Musumeci, N. Jacques, B. Ditkowski, M. Debuisson, M. Thiry, J. Dupont, A. Gougnard, C. Sandersen, J.P. Cheramy-Bien, N. Sakalihasan, A. Nchimi, C. Detrembleur, C. Jérôme, C. Oury, , Morphology and surface properties of high strength siloxane poly(urethane-urea)s developed for heart valve application, J. Biomed. Mater. Res. - Part B Appl. Biomater., 107, 1, 112–121, (2019) [CrossRef] [Google Scholar]
- D. R. Bijukumar, C. McGeehan, and M. T. Mathew, Physical characterization and platelet interactions under shear flows of a novel thermoset polyisobutylene-based co- polymer,” Physiol. Behav., 176, 1, 139–148, (2018) [Google Scholar]
- L. S. Dandeniyage, P. A. Gunatillake, R. Adhikari, M. Bown, R. Shanks, and B. Adhikari, Development of high strength siloxane poly(urethane-urea) elastomers based on linked macrodiols for heart valve application, J. Biomed. Mater. Res. - Part B Appl. Biomater., 106, 5, 1712–1720, (2018) [CrossRef] [Google Scholar]
- F. Guo, C. Liu, R. Han, Q. Lu, Y. Bai, R. Yang, D. Niu, X. Zhang, Bio-inspired anisotropic polymeric heart valves exhibiting valve-like mechanical and hemodynamic behavior, Sci. China Mater., 63, 4, 629–643, (2020) [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.