Open Access
Issue
MATEC Web Conf.
Volume 403, 2024
SUBLime Conference 2024 – Towards the Next Generation of Sustainable Masonry Systems: Mortars, Renders, Plasters and Other Challenges
Article Number 07014
Number of page(s) 12
Section Conservation, Repair and Strengthening
DOI https://doi.org/10.1051/matecconf/202440307014
Published online 16 September 2024
  1. A.G. Bueno, V.J.M. Flórez, The Nasrid plasterwork at “qubba Dar al-Manjara l-kubra” in Granada: characterisation of materials and techniques, J. Cult. Herit. 5, 75–89 (2004). [CrossRef] [Google Scholar]
  2. L. Rehhof, P. Akkermans, E. Leonardsen, I. Thuesen, Plasters: gypsum or calcite? A preliminary case study of Syrian plasters, Paléorient. 79–87 (1990). [Google Scholar]
  3. J. A. Harrell, Amarna gypsite: A new source of gypsum for ancient Egypt. Journal of Archaeological Science: Reports. 11, 536-545 (2017). [CrossRef] [Google Scholar]
  4. R. Frederiksen, E. Marchand, Plaster casts: making, collecting and displaying from classical antiquity to the present, (Walter de Gruyter, 2010). [CrossRef] [Google Scholar]
  5. J. Myssok, C.R. Marshall, The Gipsoteca of Possagno. From Artist’s Studio to Museum, (Sculpt. Museum. 2011). [Google Scholar]
  6. G. Vasari, Opere di Giorgio Vasari (Tipografia de’ fratelli Ubicini, 1840). [Google Scholar]
  7. M. Anzani, M. Berzioli, M. Cagna, E. Campani, A. Casoli, P. Cremonesi, M. Fratelli, A. Rabbolini, D. Riggiardi, Gel rigidi di agar per il trattamento di pulitura di manufatti in gesso (Use of rigid agar gels for cleaning plaster objects), (QUADERNO N.6/CESMAR7, 2008). [Google Scholar]
  8. H. Cotrim, M. do Rosário Veiga, J. de Brito, Freixo palace: Rehabilitation of decorative gypsum plasters, Constr. Build. Mater. 22, 41–49 (2008). [CrossRef] [Google Scholar]
  9. L. Bergamonti, M. Potenza, F. Scigliuzzo, S. Meli, A. Casoli, P. P. Lottici, & C. Graiff, Hydrophobic and Photocatalytic Treatment for the Conservation of Painted Lecce stone in Outdoor Conditions: A New Cleaning Approach. Applied Sciences. 14, 1261 (2024). [CrossRef] [Google Scholar]
  10. A. P. Kanth, & A. K. Soni, Application of nanocomposites for conservation of materials of cultural heritage. Journal of Cultural Heritage. 59, 120-130 (2023) [CrossRef] [Google Scholar]
  11. C. Kapridaki, L. Pinho, M. J. Mosquera, P. Maravelaki-Kalaitzaki, Producing photoactive, transparent and hydrophobic SiO2-crystalline TiO2 nanocomposites at ambient conditions with application as self-cleaning coatings. Appl. Catal. B. 156, 416–427 (2014). [CrossRef] [Google Scholar]
  12. M. J. Mosquera, D. M. De Los Santos, T. Rivas. Surfactant-synthesized ormosils with application to stone restoration. Langmuir. 26, 6737–6745 (2010). [CrossRef] [Google Scholar]
  13. P. Lacan, C. Guizard, L. Cot, Chemical and rheological investigations of the sol-gel transition in organically-modified siloxanes, J. Sol-Gel Sci. Technol. 4, 151–162 (1995). [CrossRef] [Google Scholar]
  14. D. Li, F. Xu, Z. Liu, J. Zhu, Q. Zhang, L. Shao. The effect of adding PDMS-OH and silica nanoparticles on sol–gel properties and effectiveness in stone protection. Appl. Surf. Sci., 266, 368–374 (2013). [CrossRef] [Google Scholar]
  15. I. Karapanagiotis, A. Pavlou, P. N. Manoudis, & K. E. Aifantis. Water repellent ORMOSIL films for the protection of stone and other materials. Materials Letters. 131, 276-279 (2014). [CrossRef] [Google Scholar]
  16. P.N. Manoudis, A. Tsakalof, I. Karapanagiotis, I. Zuburtikudis, C. Panayiotou. Surface & Coatings Technology, 203, p. 1322 (2009). [CrossRef] [Google Scholar]
  17. E. K. Kim, J. Won, J. Do, S.D. Kim, Y.S. Kang. Journal of Cultural Heritage, 10, (2010). [Google Scholar]
  18. EN 15886:2010, Conservation of cultural property - Test methods - Colour measurement of surfaces, 2010. [Google Scholar]
  19. UNI 11207:2007, Cultural heritage - Natural and artificial stones - Determination of static contact angle on laboratory specimens, 2007. [Google Scholar]
  20. UNI EN 15801:2010, Conservation of cultural property - Test methods - Determination of water absorption by capillarity, 2010. [Google Scholar]
  21. E.W. Washburn, The Dynamics of Capillary Flow. Phys. Rev. 17, 273 (1921). [CrossRef] [Google Scholar]
  22. EN 12504-4:2021, Testing concrete in structures - Part 4: Determination of ultrasonic pulse velocity, 2021. [Google Scholar]
  23. EN 1015-11:2020-01, Methods of test for mortar for masonry - Part 11: Determination of flexural and compressive strength of hardened mortar; German version EN 1015-11:2019, 2020. [Google Scholar]
  24. K.M. Saoud, S. Saeed, R.M. Al-Soubaihi, M.F. Bertino, Microwave assisted preparation of magnesium hydroxide nano-sheets, Am. J. Nanomater. 2, 21–25 (2014). [Google Scholar]
  25. W. Jiang, X. Hua, Q. Han, X. Yang, L. Lu, X. Wang, Preparation of lamellar magnesium hydroxide nanoparticles via precipitation method, Powder Technol. 191, 227–230 (2009). [CrossRef] [Google Scholar]
  26. F. Pascale, S. Tosoni, C. Zicovich-Wilson, P. Ugliengo, R. Orlando, R. Dovesi, Vibrational spectrum of brucite, Mg (OH)2: a periodic ab initio quantum mechanical calculation including OH anharmonicity, Chem. Phys. Lett. 396, 308–315 (2004). [CrossRef] [Google Scholar]
  27. S.C. Bae, H. Lee, Z. Lin, S. Granick, Chemical imaging in a surface forces apparatus: confocal Raman spectroscopy of confined poly (dimethylsiloxane), Langmuir. 21, 5685–5688 (2005). [CrossRef] [Google Scholar]
  28. A. Tamayo, J. Rubio, Structure modification by solvent addition into TEOS/PDMS hybrid materials, J. Non. Cryst. Solids. 356, 1742–1748 (2010). [CrossRef] [Google Scholar]
  29. H. Dong, Z. Du, Y. Zhao, D. Zhou, Preparation of surface modified nano-Mg (OH)2 via precipitation method, Powder Technol. 198 (2010) 325–329. [CrossRef] [Google Scholar]
  30. Kapridaki, & P. Maravelaki-Kalaitzaki, TiO2–SiO2–PDMS nano-composite hydrophobic coating with self-cleaning properties for marble protection, Prog. Org. 76 (2-3), 400-410 (2013). [Google Scholar]
  31. R. Basile, L. Bergamonti, F. Fernandez, C. Graiff, A. Haghighi, C. Isca, P. P. Lottici, B. Pizzo, & G. Predieri, Bio-inspired consolidants derived from crystalline nanocellulose for decayed wood, Carbohydrate polymers, 202, 164-171 (2018). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.