Open Access
Issue
MATEC Web Conf.
Volume 403, 2024
SUBLime Conference 2024 – Towards the Next Generation of Sustainable Masonry Systems: Mortars, Renders, Plasters and Other Challenges
Article Number 07012
Number of page(s) 14
Section Conservation, Repair and Strengthening
DOI https://doi.org/10.1051/matecconf/202440307012
Published online 16 September 2024
  1. G. A. Centauro, C. Francini (cured by), Progetto HECO (Heritage Colors). Metodologie Analisi Sintesi Apparati Valutazione d’impatto sul sito UNESCO Centro Storico di Firenze, (DiDa press, Firenze, 2019). [Google Scholar]
  2. N. Chieffo, (et al.). A vulnerability index-based approach for the historical centre of the city of Latronico (Potenza, Southern Italy). Eng. Fail. An. 136 (2022): 106207. [Google Scholar]
  3. C. F. Carocci, Guidelines for the safety and preservation of historical centres in seismic areas. Actas del 6° Coloquio Internacional de las Ciudades del Patrimonio Mundial. (2002): 80. [Google Scholar]
  4. A. Giuffrè, Letture sulla meccanica delle murature storiche, (Kappa editore, Roma, 1991). [Google Scholar]
  5. J. Thamboo, J. Navodi, B. Amith, Characterisation and mix specification of commonly used masonry mortars. SN Applied Sciences. 1.4 (2019): 292. [CrossRef] [Google Scholar]
  6. ICOMOS/ISCARSAH Committee, Recommendations for the analysis, conservation and structural restoration of architectural heritage. ICOMOS international committee for analysis and restoration of structures of architectural heritage (2005). [Google Scholar]
  7. N. C. Palazzi (et al.). A proposal for an intervention quality index method (IQI) for the structural consolidation of monumental buildings. SACH. (2020). [Google Scholar]
  8. C. Bertolin, A. Loli. Sustainable interventions in historic buildings: A developing decision-making tool. Jour. of Cult. Her. 34. (2018): 291–302. [CrossRef] [Google Scholar]
  9. M. Apostolopoulou (et al.). Compatible Mortars for the Sustainable Conservation of Stone in Masonries. Advanced Materials for the Conservation of Stone (edited by). (2018): 97-123. [Google Scholar]
  10. L. Restuccia (et al.). An investigation of the beneficial effects of adding carbon nanotubes to standard injection grout. Fatig. and Fract. of Eng. Mater. and Struct. 41. (2018). [Google Scholar]
  11. P. Faria (et al.). New composite of natural hydraulic lime mortar with graphene oxide. Constr. and Build. Mater. 156. (2017):1150–57. [CrossRef] [Google Scholar]
  12. A. Drougkas (et al.). Design of a smart lime mortar with conductive micro and nano fillers for structural health monitoring. Constr. and Build. Mater. 367. (2023): 130024. [CrossRef] [Google Scholar]
  13. K. Van Balen (et al.), Introduction to requirements for and functions and properties of repair mortars. Mater. and Struct. 38 (2005): 282. [Google Scholar]
  14. C. Groot (et al.), RILEM TC 277-LHS report: Lime-based mortars for restoration–a review on long-term durability aspects and experience from practice. Mater. and Struct. 55.10. (2022): 245. [CrossRef] [Google Scholar]
  15. A. Moropoulou (et al.), Investigation of the technology of historic mortars. Jour. of Cult. Her. 1. (2000). [Google Scholar]
  16. E. Pecchioni (et al.), Le malte antiche e moderne tra tradizione e innovazione, (Patron editore, Bologna, 2006). [Google Scholar]
  17. J. Delgado Rodrigues, A. Grossi. Indicators and ratings for the compatibility assessment of conservation actions. Jour. of Cult. Her. 8. (2007). [Google Scholar]
  18. N. P. Avdelidis, A. Moropoulou. Applications of infrared thermography for the investigation of historic structures. Jour. of Cult. Her. 5. (2004): 119–27. [CrossRef] [Google Scholar]
  19. A. Moropoulou A (et al.). Non-destructive techniques as a tool for the protection of built cultural heritage. Constr. Build. Mater. 48. (2013): 1222–39. [CrossRef] [Google Scholar]
  20. K. Beck, M. Al-Mukhtar. Formulation and characterisation of an appropriate lime-based mortar for use with a porous limestone. Environ. Geol. 56. (2008): 715–27. [CrossRef] [Google Scholar]
  21. B. Szemerey-Kiss, A.Torok. The effects of the different curing conditions and the role of added aggregate in the strength of repair mortars. Environ. Earth. Sci. 76. (2017): 284. [CrossRef] [Google Scholar]
  22. A. Kalagri. The effect of aggregate size and type of binder on microstructure and mechanical properties of NHL mortars. Constr. and Build. Mater. 53. (2014): 467-474. [CrossRef] [Google Scholar]
  23. L. Garijo (et al.). Advanced mechanical characterization of NHL mortars and cohesive simulation of their failure behaviour. Constr. and Build. Mater. 153. (2017): 569-577. [CrossRef] [Google Scholar]
  24. J. Lanas. Mechanical properties of natural hydraulic lime-based mortars. Cem. and Concr. Resea. 34(12). (2004): 2191-2201. [CrossRef] [Google Scholar]
  25. Z. Chen (et al.). A review of mechanical properties and carbonation behaviour evolution of lime mortar for architectural heritages restoration. (2024). [Google Scholar]
  26. I. Papayianni, M. Stefanidou. Strength-porosity relationships in lime-pozzolan mortars. Constr. Build. Mater. 20. (2006): 700–705. [CrossRef] [Google Scholar]
  27. N. Gucci N, R. Barsotti. A non-destructive technique for the determination of mortar load capacity in situ. Mater Struct. 28. (1995):276–283. [Google Scholar]
  28. D. Costa (et al.). Characterisation of mortars using drilling resistance measurement system (DRMS): tests on field panels samples. Historic Mortars: Characterisation, Assessment and Repair. Springer. (2012). [Google Scholar]
  29. P. Bocca, A. Grazzini. Experimental procedure for the pre-qualification of strengthening mortars. Int. Jour. of Arch. Her. 6. (2012). [Google Scholar]
  30. Q. Zeng (et al.). Effect of porosity on thermal expansion coefficient of cement pastes and mortars. Constr. and Build. Mater. 28.1. (2012): 468-475. [CrossRef] [Google Scholar]
  31. A. Andrei (et al.). X-Ray Diffraction: Instrumentation and Applications. Critical Reviews in Analytical Chemistry. (2015). [Google Scholar]
  32. F. Casadio (et al.). Evaluation binder aggregate ratios in archaeological lime mortars with carbonate aggregate: a comparative assessment of chemical, mechanical and microscopic approaches. Archaeometry. 47.4. (2005). [Google Scholar]
  33. S. Columbu (et al). Strategies for helium pycnometry density measurements of welded ignimbritic rocks. Measur. 173. (2021): 108640. [Google Scholar]
  34. S. Columbu (et al.). Lime and Cement Plasters from 20th Century Buildings: Raw Materials and Relations between Mineralogical–Petrographic Characteristics and Chemical–Physical Compatibility with the Limestone Substrate. Minerals. 12(2). (2022): 226. [Google Scholar]
  35. R. Sukhon (et al.). Measurement of the volume and density of weight by hydrostatic weighing method. Siam Physics Congress SPC2011. (2011). [Google Scholar]
  36. C. Blaeuer, A. Kueng. Examples of microscopic analysis of historic mortars by means of polarising light microscopy of dispersions and thin sections. Mater. charact. 58(11-12). (2007): 1199-1207. [CrossRef] [Google Scholar]
  37. R. D. Terry, G. V. Chilingar G.V. Percent coverage comparison charts. Journ. of Sedim. Petrol. 24. (1955): 229-234. [CrossRef] [Google Scholar]
  38. E. Pecchioni (et al.). The ancient mortars, an attestation of the material culture: the case of Florence. Period. di Miner. 75.2-3 (2006): 255-262. [Google Scholar]
  39. E. Cantisani (et al.). Optical and electronic microscope for mineral-petrographic and microchemical studies of lime binders of ancient mortars. Minerals. 12.1. (2021): 41. [CrossRef] [Google Scholar]
  40. B. Li, W. Lu. Application of image processing technology in the digital media era in the design of integrated materials painting in installation art. Multimedia Tools and Applications. (2023): 1-18. [Google Scholar]
  41. T. Long (et al.). A review of artificial intelligence technologies in mineral identification: classification and visualisation. Journ. of Sens. and Actuat. Netw. 11.3. (2022): 50. [CrossRef] [Google Scholar]
  42. H. Izadi (et al.). An intelligent system for mineral identification in thin sections based on a cascade approach. Comp. & Geosc. 99. (2017): 37-49. [CrossRef] [Google Scholar]
  43. D. G. Tang (et al.). Machine learning for point counting and segmentation of arenite in thin section. Marine and Petrol. Geol. 120. (2020): 104518. [Google Scholar]
  44. S. Budennyy (et al.). Image processing and machine learning approaches for petrographic thin section analysis. SPE Russian Petroleum Technology Conference?. October. SPE. (2017). [Google Scholar]
  45. S. Evialdi (edited by), Digital Image Analysis, (Pitman, Roma, 1984). [Google Scholar]
  46. Reedy, C. L. (2006). Review of digital image analysis of petrographic thin sections in conservation research. Jour. of the Amer. Instit. for Conserv. 45.2. (2006): 127-146. [CrossRef] [Google Scholar]
  47. B. Wei Chong (et al.). Image analysis of surface porosity mortar containing processed spent bleaching earth. Materials. 14.7. (2021): 1658. [CrossRef] [Google Scholar]
  48. F. Sitzia (et al.).The particle-size distribution of concrete and mortar aggregates by image analysis. Jour. of Build. Pathol. and Rehabil, 7.1. (2022): 74. [Google Scholar]
  49. N. Marinoni (et al.). Characterisation of mortar morphology in thin sections by digital image processing. Cem. and Concr. Resea. 35.8. (2005): 1613-1619. [CrossRef] [Google Scholar]
  50. R. Piovesan (et al.). Production recipes of mortar-based materials from ancient Pompeii by quantitative image analysis approach: The microstratigraphy of plasters in the Temple of Venus. Jour. of Cult. Herit. 59. (2023): 57-68. [CrossRef] [Google Scholar]
  51. F. Carò, A. Di Giulio. Reliability of textural analysis of ancient plasters and mortars through automated image analysis. Mater. Charact. 53(2-4). (2004): 243-257. [CrossRef] [Google Scholar]
  52. J. Thamboo (et al.). Characterisation and mix specification of commonly used masonry mortars. SN Applied Sciences. 1.4. (2019): 292. [CrossRef] [Google Scholar]
  53. A. Isebaert (et al.). Composition and compatibility requirements of mineral repair mortars for stone–A review. Constr. and Build. Mater. 59. (2014): 39-50. [CrossRef] [Google Scholar]
  54. A. Arizzi, G. Cultrone. Mortars and plasters—how to characterise hydraulic mortars. Archaeol. and Anthropol. Scien. 13.9. (2021): 144. [Google Scholar]
  55. W. C. Krumbein. Size frequency distributions of sediments. Journ. of Sedim. Petrol. 2 (4). (1934). [Google Scholar]
  56. C. K. Wentworth. A scale of grade and class terms for clastic sediments. The journ. of geol. 30.5. (1922): 377-392. [CrossRef] [Google Scholar]
  57. C. Acidini (et al.), Il Rinascimento a Firenze: capolavori e protagonisti (Gangemi editore, Roma, 2012). [Google Scholar]
  58. K. Elert (et al.). Lime mortars for the conservation of historic buildings. Stud. Conserv. 47. (2002): 62–75. [CrossRef] [Google Scholar]
  59. S. Lugli (et al.). Building materials and degradation phenomena of the Finale Emilia Town Hall (Modena): An archaeometric study for the restoration project after the 2012 earthquake. 2016 Period. Di Miner. 85. (2016): 59–67. [Google Scholar]
  60. G. Ponce-Anton (et al.). Mineralogical, textural and physical characterisation to determine deterioration susceptibility of Irulegi Castle lime mortars (Navarre, Spain). Materials. 12. (2019): 584. [CrossRef] [Google Scholar]
  61. C. Filippo, L. Ermini. Applicazione di tecniche di mappatura ad alta risoluzione nel fiume Arno (Firenze). Giornale di Geol. Appl. 9.2. (2008): 215-225. [Google Scholar]
  62. C. Corrado, P. Tacconi. The fluvial dynamics of the Arno River. Giornale di Geol. Appl. 1.01. (2005): 193-202. [Google Scholar]
  63. E. Pecchioli (et al.). Optical and Electronic Microscope for Minero-Petrographic and Microchemical Studies of Lime Binders of Ancient Mortars. Minerals. (2021):1-19. [Google Scholar]
  64. W. Johannes (et al.). Hydraulicity in ancient mortars: its origin and alteration phenomena under the microscope. 15th Euroseminar on Microscopy Applied to Building Materials. (2015): 147-156. [Google Scholar]
  65. M. L. Thomson (et al.). Porosity of historic mortars. In 13th international brick and block masonry conference. Amsterdam. July (2024). [Google Scholar]
  66. P. Giovannini. Florentine Plasters and graffiti from 13th century: materials, tools and execution technique. Scien. and Techno. for Cult. Herit. 2. (1993):27-42. [Google Scholar]
  67. F. Fratini (et al.). Pietra Alberese: Building Material and Stone for Lime in the Florentine Territory (Tuscany, Italy). Herit. 3. (2020): 1520–1538. [CrossRef] [Google Scholar]
  68. G. Targioni Tozzetti. Relazioni di alcuni viaggi fatti in Toscana, per osservare le produzioni naturali, e gli antichi monumenti di essa dal Dottor Giovanni Targioni Tozzetti. I. (1768): 1-16. IX. (1776): 59-154. X. (1777): 261-279; 291-292; 301-302. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.