Open Access
Issue
MATEC Web Conf.
Volume 403, 2024
SUBLime Conference 2024 – Towards the Next Generation of Sustainable Masonry Systems: Mortars, Renders, Plasters and Other Challenges
Article Number 06006
Number of page(s) 14
Section Sustainability and Circularity
DOI https://doi.org/10.1051/matecconf/202440306006
Published online 16 September 2024
  1. L. Lima, E. Trindade, L. Alencar, M. Alencar, L. Silva, Sustainability in the construction industry: A systematic review of the literature, J. Clean. Prod. 289, 125730 (2021). [CrossRef] [Google Scholar]
  2. E.Z. Escamilla, G. Habert, E. Wohlmuth, When CO2 counts: Sustainability assessment of industrialized bamboo as an alternative for social housing programs in the Philippines, Build. Environ. 103, 44–53 (2016). [CrossRef] [Google Scholar]
  3. J.O. Ighalo, A.G. Adeniyi, A perspective on environmental sustainability in the cement industry, Waste Dispos. Sustain. Energy. 2, 161–164 (2020). [CrossRef] [Google Scholar]
  4. https://www.iea.org/reports/cement-3, accessed 2024-05-03, (n.d.). [Google Scholar]
  5. Y. Guo, L. Luo, T. Liu, L. Hao, Y. Li, P. Liu, T. Zhu, A review of low-carbon technologies and projects for the global cement industry, J. Environ. Sci. 136, 682–697 (2024). [CrossRef] [Google Scholar]
  6. D. Ferretti, E. Michelini, The Effect of Density on the Delicate Balance between Structural Requirements and Environmental Issues for AAC Blocks: An Experimental Investigation, Sustainability. 13, 13186 (2021). [CrossRef] [Google Scholar]
  7. https://sdgs.un.org/goals, (n.d.). [Google Scholar]
  8. R. Rithuparna, V. Jittin, A. Bahurudeen, Influence of different processing methods on the recycling potential of agro-waste ashes for sustainable cement production: A review, J. Clean. Prod. 316, 128242 (2021). [CrossRef] [Google Scholar]
  9. A.R.G. de Azevedo, A.M. Costa, D. Cecchin, C.R. Pereira, M.T. Marvila, A. Adesina, Economic potential comparative of reusing different industrial solid wastes in cementitious composites: a case study in Brazil, Environ. Dev. Sustain. 1–24 (2022). [Google Scholar]
  10. C. Sun, L. Chen, J. Xiao, A. Singh, J. Zeng, Compound utilization of construction and industrial waste as cementitious recycled powder in mortar, Resour. Conserv. Recycl. 170, 105561 (2021). [Google Scholar]
  11. E. Michelini, D. Ferretti, F. Pagliari, R. Cerioni, L. Bergamonti, M. Potenza, C. Graiff, Fracture energy of sustainable geopolymer composites with and without the addition of slaughterhouse by-products as fibre-reinforcement: an experimental investigation, Procedia Struct. Integr. 39, 71–80 (2022). [CrossRef] [Google Scholar]
  12. T. Tomić, D.R. Schneider, Circular economy in waste management–Socio-economic effect of changes in waste management system structure, J. Environ. Manage. 267, 110564 (2020). [Google Scholar]
  13. P.O. Awoyera, A. Adesina, Plastic wastes to construction products: Status, limitations and future perspective, Case Stud. Constr. Mater. 12, e00330 (2020). [Google Scholar]
  14. J.L. Provis, S.A. Bernal, Geopolymers and related alkali-activated materials, Annu. Rev. Mater. Res. 44, 299–327 (2014). [CrossRef] [Google Scholar]
  15. J.L. Provis, J.S.J. Van Deventer, Alkali activated materials: state-of-the-art report, RILEM TC 224-AAM, (Springer Science & Business Media, 2013). [Google Scholar]
  16. T.H. Silva, L.F.S. Lara, G.J.B. Silva, J.L. Provis, A.C.S. Bezerra, Alkali-activated materials produced using high-calcium, high-carbon biomass ash, Cem. Concr. Compos. 132, 104646 (2022). [CrossRef] [Google Scholar]
  17. T. Luukkonen, Z. Abdollahnejad, J. Yliniemi, P. Kinnunen, M. Illikainen, One-part alkali-activated materials: A review, Cem. Concr. Res. 103, 21–34 (2018). [CrossRef] [Google Scholar]
  18. I.P. Segura, N. Ranjbar, A.J. Dam, L.S. Jensen, M. Canut, P.A. Jensen, A review: Alkali-activated cement and concrete production technologies available in the industry, Heliyon (2023). [Google Scholar]
  19. H.-Y. Zhang, J.-C. Liu, B. Wu, Mechanical properties and reaction mechanism of one-part geopolymer mortars, Constr. Build. Mater. 273, 121973 (2021). [Google Scholar]
  20. L. Bergamonti, E. Michelini, C. Graiff, F. Pagliari, M. Potenza, T. Francesco, F. Bondioli, D. Ferretti, Influence of alkali cations on the mechanical properties of geopolymer-like binders based on solid alkali activator., in: Concr. Innov. Sustain. 6th Fib Int. Congr. 2022, S. Stokkeland, C. Braarud (2022) pp. 537–546. [Google Scholar]
  21. M. Gonçalves, I.S. Vilarinho, M. Capela, A. Caetano, R.M. Novais, J.A. Labrincha, M.P. Seabra, Waste-based one-part alkali activated materials, Materials (Basel). 14, 2911 (2021). [Google Scholar]
  22. M. Elzeadani, D. V Bompa, A.Y. Elghazouli, One part alkali activated materials: A state-of-the-art review, J. Build. Eng. 57, 104871 (2022). [Google Scholar]
  23. L. Bergamonti, E. Michelini, C. Graiff, D. Ferretti, C. Sciancalepore, Development of an eco-friendly one-part alkali activated mortar with blast-furnace slag: some preliminary results, in: Proc. ICCS24 - Fib Int. Conf. Concr. Sustain. (2024). [Google Scholar]
  24. EN 1015-11:2020-01, Methods of test for mortar for masonry - Part 11: Determination of flexural and compressive strength of hardened mortar; German version EN 1015-11:2019, 2020. [Google Scholar]
  25. EN 1745:, Masonry and masonry products - Methods for determining thermal properties, 2020. [Google Scholar]
  26. EN 12664:, Thermal performance of building materials and products - Determination of thermal resistance by means of guarded hot plate and heat flow meter methods - Dry and moist products of medium and low thermal resistance, 2001. [Google Scholar]
  27. ASTM E1530-19, Standard Test Method for Evaluating the Resistance to Thermal Transmission by the Guarded Heat Flow Meter Technique, 2019. [Google Scholar]
  28. ASTM E1269-11, Standard Test Method for Determining Specific Heat Capacity by Differential Scanning Calorimetry, 2018. [Google Scholar]
  29. Z. Yunsheng, S. Wei, L. Zongjin, Composition design and microstructural characterization of calcined kaolin-based geopolymer cement, Appl. Clay Sci. 47, 271–275 (2010). [CrossRef] [Google Scholar]
  30. L. Bergamonti, R. Taurino, L. Cattani, D. Ferretti, F. Bondioli, Lightweight hybrid organic-inorganic geopolymers obtained using polyurethane waste, Constr. Build. Mater. 185, 285–292 (2018). [CrossRef] [Google Scholar]
  31. D. Wang, P. Mousavi, P.J. Hauser, W. Oxenham, C.S. Grant, Quartz crystal microbalance in elevated temperature viscous liquids: Temperature effect compensation and lubricant degradation monitoring, Colloids Surfaces A Physicochem. Eng. Asp. 268, 30–39 (2005). [CrossRef] [Google Scholar]
  32. J. Xiang, L. Liu, Y. He, N. Zhang, X. Cui, Early mechanical properties and microstructural evolution of slag/metakaolin-based geopolymers exposed to karst water, Cem. Concr. Compos. 99, 140–150 (2019). [CrossRef] [Google Scholar]
  33. M.R. El-Naggar, M. Amin, Impact of alkali cations on properties of metakaolin and metakaolin/slag geopolymers: Microstructures in relation to sorption of 134Cs radionuclide, J. Hazard. Mater. 344, 913–924 (2018). [CrossRef] [Google Scholar]
  34. EN 998-1:2016, Specification for mortar for masonry - Part 1: Rendering and plastering mortar, 2016. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.