Open Access
Issue |
MATEC Web Conf.
Volume 403, 2024
SUBLime Conference 2024 – Towards the Next Generation of Sustainable Masonry Systems: Mortars, Renders, Plasters and Other Challenges
|
|
---|---|---|
Article Number | 06001 | |
Number of page(s) | 16 | |
Section | Sustainability and Circularity | |
DOI | https://doi.org/10.1051/matecconf/202440306001 | |
Published online | 16 September 2024 |
- United Nations Environment Programme, Building Materials and the Climate: Constructing a New Future, Nairobi, 2023. [Google Scholar]
- M. Fernandes, A. Tavares, O Adobe, (Argumentum, Lisbon, 2016). [Google Scholar]
- R. Illampas, I. Ioannou, D.C. Charmpis, Adobe: An environmentally friendly construction material, WIT Transactions on Ecology and the Environment 120 (2009) 245–256. https://doi.org/10.2495/SDP090241. [CrossRef] [Google Scholar]
- F. Pacheco-Torgal, S. Jalali, Earth construction: Lessons from the past for future eco-efficient construction, Constr Build Mater 29 (2012) 512–519. https://doi.org/10.1016/j.conbuildmat.2011.10.054. [CrossRef] [Google Scholar]
- H. Houben, H. and Guillaud, Earth construction: a comprehensive guide, (Intermediate Technology Publications, 1994) [Google Scholar]
- B. Medvey, G. Dobszay, Durability of Stabilized Earthen Constructions: A Review, Geotechnical and Geological Engineering 38 (2020). https://doi.org/10.1007/s10706-020-01208-6. [Google Scholar]
- A.H. Meek, M. Elchalakani, Life cycle assessment of rammed earth made using alkaline activated industrial by-products, in: IOP Conf Ser Earth Environ Sci, Institute of Physics Publishing (2019). https://doi.org/10.1088/1755-1315/323/1/012143. [Google Scholar]
- D. Gallipoli, A.W. Bruno, Q.B. Bui, A. Fabbri, P. Faria, D. V. Oliveira, C. Ouellet-Plamondon, R.A. Silva, Durability of Earth Materials: Weathering Agents, Testing Procedures and Stabilisation Methods, in: RILEM State-of-the-Art Reports (2022). https://doi.org/10.1007/978-3-030-83297-1_6. [Google Scholar]
- D. Arduin, L.R. Caldas, R. de L.M. Paiva, F. Rocha, Life Cycle Assessment (LCA) in Earth Construction: A Systematic Literature Review Considering Five Construction Techniques, Sustainability 14 (2022) 13228. https://doi.org/10.3390/SU142013228. [Google Scholar]
- A. Arrigoni, A.C. Grillet, R. Pelosato, G. Dotelli, C.T.S. Beckett, M. Woloszyn, D. Ciancio, Reduction of rammed earth’s hygroscopic performance under stabilisation: an experimental investigation, Build Environ 115 (2017) 358–367. https://doi.org/10.1016/j.buildenv.2017.01.034. [CrossRef] [Google Scholar]
- K. Elert, E.S. Pardo, C. Rodriguez-Navarro, Alkaline activation as an alternative method for the consolidation of earthen architecture, J Cult Herit 16 (2015) 461–469. https://doi.org/10.1016/j.culher.2014.09.012. [CrossRef] [Google Scholar]
- C. Costa, D. Arduin, C. Sequeira, D. Terroso, S. Moutinho, Cerqueira, A. Velosa, F. Rocha, Alkaline Activation of Rammed Earth Material – “New Generation of Adobes,” in: Springer Proceedings in Earth and Environmental Sciences, (2019). https://doi.org/10.1007/978-3-030-22974-0_75. [Google Scholar]
- R.A. Silva, E. Soares, D. V. Oliveira, T. Miranda, N.M. Cristelo, D. Leitão, Mechanical characterisation of dry-stack masonry made of CEBs stabilised with alkaline activation, Constr Build Mater 75 (2015). https://doi.org/10.1016/j.conbuildmat.2014.11.038. [Google Scholar]
- A. Arrigoni, C. Beckett, D. Ciancio, G. Dotelli, Life cycle analysis of environmental impact vs. durability of stabilised rammed earth, Constr Build Mater 142 (2017) 128–136. https://doi.org/10.1016/j.conbuildmat.2017.03.066. [CrossRef] [Google Scholar]
- N. Cristelo, S. Glendinning, T. Miranda, D. Oliveira, R. Silva, Soil stabilisation using alkaline activation of fly ash for self compacting rammed earth construction, Constr Build Mater 36 (2012) 727–735. https://doi.org/10.1016/j.conbuildmat.2012.06.037. [CrossRef] [Google Scholar]
- K. Elert, F. Jroundi, C. Benavides-Reyes, E. Correa Gómez, D. Gulotta, C. Rodriguez-Navarro, Consolidation of clay-rich earthen building materials: A comparative study at the Alhambra fortress (Spain), Journal of Building Engineering 50 (2022) 104081. https://doi.org/10.1016/j.jobe.2022.104081. [CrossRef] [Google Scholar]
- J.L. Provis, Alkali-activated materials, Cem Concr Res 114 (2018) 40–48. https://doi.org/10.1016/J.CEMCONRES.2017.02.009. [CrossRef] [Google Scholar]
- A.W. Bruno, D. Gallipoli, C. Perlot, J. Mendes, Effect of stabilisation on mechanical properties, moisture buffering and water durability of hypercompacted earth, Constr Build Mater 149 (2017). https://doi.org/10.1016/j.conbuildmat.2017.05.182. [Google Scholar]
- ISO/TS 17892-4, Geotechnical investigation and testing - Laboratory testing of soil - Part 4: Determination of particle size distribution, EUROPEAN COMMITTEE FOR STANDARDIZATION (2004) 1–30. [Google Scholar]
- G. Brown, G.W. Brindley, X-ray Diffraction Procedures for Clay Mineral Identification, in: Crystal Structures of Clay Minerals and Their X-Ray Identification (2015). https://doi.org/10.1180/mono-5.5. [Google Scholar]
- International Organization for Standardization, Geotechnical Investigation and Testing - Laboratory Testing of Soil – Part 12: Determination of Atterberg Limits., ISO/TS 17892-18, 2018. [Google Scholar]
- J. Davidovits, Geopolymer: Chemistry & Applications, 4th ed., (Saint-Quentin, 2015). [Google Scholar]
- S. Andrejkovičová, A.L. Velosa, F. Rocha, Air lime–metakaolin–sepiolite mortars for earth based walls, Constr Build Mater 44 (2013) 133–141. https://doi.org/10.1016/J.CONBUILDMAT.2013.03.008. [CrossRef] [Google Scholar]
- EN 1015-11:2019 - Methods of test for mortar for masonry - Part 11: Determination of flexural and compressive strength of hardened mortar. [Google Scholar]
- H.N. Abhilash, E. Hamard, C.T.S. Beckett, J.C. Morel, H. Varum, D. Silveira, I. Ioannou, R. Illampas, Mechanical Behaviour of Earth Building Materials, RILEM State-of-the-Art Reports 35 (2022) 127–180. https://doi.org/10.1007/978-3-030-83297-1_4/COVER. [CrossRef] [Google Scholar]
- S. Muguda, G. Lucas, P.N. Hughes, C.E. Augarde, C. Perlot, A.W. Bruno, D. Gallipoli, Durability and hygroscopic behaviour of biopolymer stabilised earthen construction materials, Constr Build Mater 259 (2020) 119725. https://doi.org/10.1016/J.CONBUILDMAT.2020.119725. [CrossRef] [Google Scholar]
- ISO 14040, Environmental management - Life cycle assessment - Requirements and guidelines, (2006) 1–46. [Google Scholar]
- ISO 14040, Environmental management - Life cycle assessment - Principles and framework., (2006). [Google Scholar]
- EN 15804:2012+A2, Sustainability of construction works - Environmental product declarations - Core rules for the product category of construction products, Technical Committee CEN/TC 350 (2019) 1–71. [Google Scholar]
- J. Fernandes, M. Peixoto, R. Mateus, H. Gervásio, Life cycle analysis of environmental impacts of earthen materials in the Portuguese context: Rammed earth and compressed earth blocks, J Clean Prod 241 (2019) 118286. https://doi.org/10.1016/j.jclepro.2019.118286. [CrossRef] [Google Scholar]
- J. Madejová, P. Komadel, Baseline studies of the clay minerals society source clays: Infrared methods, Clays Clay Miner 49 (2001). https://doi.org/10.1346/CCMN.2001.0490508. [Google Scholar]
- C. Finocchiaro, G. Barone, P. Mazzoleni, C. Leonelli, A. Gharzouni, S. Rossignol, FT-IR study of early stages of alkali activated materials based on pyroclastic deposits (Mt. Etna, Sicily, Italy) using two different alkaline solutions, Constr Build Mater 262 (2020). https://doi.org/10.1016/J.CONBUILDMAT.2020.120095. [CrossRef] [Google Scholar]
- R. Mateus, J. Fernandes, E.R. Teixeira, Environmental Life Cycle Analysis of Earthen Building Materials, in: Encyclopedia of Renewable and Sustainable Materials, Elsevier, (2020): pp. 63–68. https://doi.org/10.1016/b978-0-12-803581-8.11459-6. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.