Open Access
Issue
MATEC Web Conf.
Volume 403, 2024
SUBLime Conference 2024 – Towards the Next Generation of Sustainable Masonry Systems: Mortars, Renders, Plasters and Other Challenges
Article Number 05003
Number of page(s) 12
Section Structural and Functional Performance
DOI https://doi.org/10.1051/matecconf/202440305003
Published online 16 September 2024
  1. Alina Galimshina, Maliki Moustapha, Alexander Hollberg, Pierryves Padey, Sébastien Lasvaux, Bruno Sudret, Guillaume Habert, Statistical method to identify robust building renovation choices for environmental and economic performance, Building and Environment, Volume 183, 2020, 107143, ISSN 0360-1323, https://doi.org/10.1016/j.buildenv.2020.107143. [CrossRef] [Google Scholar]
  2. Espinosa-Marzal, R.M., Scherer, G.W. Impact of in-pore salt crystallization on transport properties. Environ Earth Sci 69, 2657–2669 (2013). https://doi.org/10.1007/s12665-012-2087-z [CrossRef] [Google Scholar]
  3. Desarnaud J, Bonn D, Shahidzadeh N. The Pressure induced by salt crystallization in confinement. Sci Rep. 2016 Aug 5;6:30856. doi: 10.1038/srep30856 [CrossRef] [Google Scholar]
  4. Jing Zhao, Hongjie Luo, Transport and crystallization of NaCl solution in porous silicate materials, Journal of Crystal Growth, Volume 519, 2019, Pages 25-34, ISSN 0022-0248, https://doi.org/10.1016/j.jcrysgro.2019.05.003 [CrossRef] [Google Scholar]
  5. Barbara Lubelli, Rob P.J. van Hees, Caspar W.P. Groot, Investigation on the behaviour of a restoration plaster applied on heavy salt loaded masonry, Construction and Building Materials, Volume 20, Issue 9, 2006, Pages 691-699, ISSN 0950-0618, https://doi.org/10.1016/j.conbuildmat.2005.02.010 [CrossRef] [Google Scholar]
  6. J. Martínez-Martínez, E. Torrero, D. Sanz, V. Navarro, Salt crystallization dynamics in indoor environments: Stone weathering in the Muñoz Chapel of the Cathedral of Santa María (Cuenca, central Spain), Journal of Cultural Heritage, Vol-ume 47, 2021, Pages 123-132, ISSN 1296-2074, https://doi.org/10.1016/j.culher.2020.09.011 [CrossRef] [Google Scholar]
  7. Caspar Groot, Rob van Hees, Tomas Wijffels, Selection of plasters and renders for salt laden masonry substrates, Construction and Building Materials, Volume 23, Issue 5, 2009, Pages 1743-1750, ISSN 0950-0618, https://doi.org/10.1016/j.conbuildmat.2008.09.013. [CrossRef] [Google Scholar]
  8. Ternovyi, V. I.”Perlitovi sanuiuchi shtukaturky dlia mokrykh i zasolenykh stin.” Budivelne vyrobnytstvo 56 (2014): 111-115. [Google Scholar]
  9. Waclaw Brachaczek, Microstructure of renovation plasters and their resistance to salt, Construction and Building Materials, Volume 182, 2018, Pages 418-426, ISSN 0950-0618, https://doi.org/10.1016/j.conbuildmat.2018.06.068. [CrossRef] [Google Scholar]
  10. Martin Vyšvařil, Milena Pavlíková, Martina Záleská, Adam Pivák, Tomáš Žižlavský, Pavla Rovnaníková, Patrik Bayer, Zbyšek Pavlík, Non-hydrophobized perlite renders for repair and thermal insulation purposes: Influence of different binders on their properties and durability, Construction and Building Materials, Volume 263, 2020, 120617, ISSN 0950-0618, https://doi.org/10.1016/j.conbuildmat.2020.120617 [CrossRef] [Google Scholar]
  11. Zbyšek Pavlík, Milena Pavlíková, Martina Záleská, Martin Vyšvařil, Tomáš Žižlavský, Lightweight thermal efficient repair mortars with expanded glass (EG) for repairing historical buildings: The effect of binder type and EG aggregate dosage on their performance, Energy and Buildings, Volume 276, 2022, 112526, ISSN 0378-7788, https://doi.org/10.1016/j.enbuild.2022.112526. [CrossRef] [Google Scholar]
  12. Hojdys, Ł.; Krajewski, P. Tensile Behaviour of FRCM Composites for Strengthening of Masonry Structures - An Experimental Investigation. Materials 2021, 14, 3626. https://doi.org/10.3390/ma14133626 [CrossRef] [Google Scholar]
  13. Valluzzi, M.R., Modena, C. & de Felice, G. Current practice and open issues in strengthening historical buildings with composites. Mater Struct 47, 1971–1985 (2014). https://doi.org/10.1617/s11527-014-0359-7 [CrossRef] [Google Scholar]
  14. de Felice, G., De Santis, S., Garmendia, L. et al. Mortar-based systems for externally bonded strengthening of masonry. Mater Struct 47, 2021–2037 (2014). https://doi.org/10.1617/s11527-014-0360-1 [CrossRef] [Google Scholar]
  15. Guide to Design and Construction of Externally Bonded Fabric-Reinforced Cementitious Matrix (FRCM) Systems for Repair and Strengthening Concrete and Masonry Structures,ACI 549.4R (ACI 2013), ISBN: 978-0-87031-852-8 [Google Scholar]
  16. Christina Giarma, Petrini Kampragkou, Maria Stefanidou, Hygrothermal properties of mortars containing perlite by-products, Construction and Building Materials, Volume 416, 2024, 135065, ISSN 0950-0618, https://doi.org/10.1016/j.conbuildmat.2024.135065. [CrossRef] [Google Scholar]
  17. María Jesús González, Justo García Navarro, Assessment of the decrease of CO2 emissions in the construction field through the selection of materials: Practical case study of three houses of low environmental impact, Building and Environment, Volume 41, Issue 7, 2006, Pages 902-909, ISSN 0360-1323, https://doi.org/10.1016/j.buildenv.2005.04.006. [CrossRef] [Google Scholar]
  18. Bahareh Tayebani, Aly Said, Ali Memari, Less carbon producing sustainable concrete from environmental and performance perspectives: A review, Construction and Building Materials, Volume 404, 2023, 133234, ISSN 0950-0618, https://doi.org/10.1016/j.conbuildmat.2023.133234. [CrossRef] [Google Scholar]
  19. Ginga CP, Ongpeng JMC, Daly MKM. Circular Economy on Construction and Demolition Waste: A Literature Review on Material Recovery and Production. Materials. 2020; 13(13):2970. https://doi.org/10.3390/ma13132970 [CrossRef] [Google Scholar]
  20. H. Shoukry, M.F. Kotkata, S.A. Abo-EL-Enein, M.S. Morsy, S.S. Shebl, Enhanced physical, mechanical and microstructural properties of lightweight vermiculite cement composites modified with nano metakaolin, Construction and Building Materials, Volume 112, 2016, Pages 276-283, ISSN 0950-0618, https://doi.org/10.1016/j.conbuildmat.2016.02.209. [CrossRef] [Google Scholar]
  21. Jingmeng Sun, Junqi Zhao, Weiye Zhang, Jianuo Xu, Beibei Wang, Xuanye Wang, Jun Zhou, Hongwu Guo, Yi Liu, Composites with a Novel Coreshell Structural Expanded Perlite/Polyethylene glycol Composite PCM as Novel Green Energy Storage Composites for Building Energy Conservation, Applied Energy, Volume 330, Part A, 2023, 120363, ISSN 0306-2619, https://doi.org/10.1016/j.apenergy.2022.120363. [CrossRef] [Google Scholar]
  22. Junbing Shi, Min Li, Lightweight mortar with paraffin/expanded vermiculite-diatomite composite phase change materials: Development, characterization and year-round thermoregulation performance, Solar Energy, Volume 220, 2021, Pages 331-342, ISSN 0038-092X, https://doi.org/10.1016/j.solener.2021.03.053. [CrossRef] [Google Scholar]
  23. Berivan Yılmazer Polat, Self healing of alkali active mortars with expanded perlite aggregate, Case Studies in Construction Materials, Volume 17, 2022, e01225, ISSN 2214-5095, https://doi.org/10.1016/j.cscm.2022.e01225. [Google Scholar]
  24. Soner Top, Hüseyin Vapur, Mahmut Altiner, Dogan Kaya, Ahmet Ekicibil, Properties of fly ash-based lightweight geopolymer concrete prepared using pumice and expanded perlite as aggregates, Journal of Molecular Structure, Volume 1202, 2020, 127236, ISSN 0022-2860, https://doi.org/10.1016/j.molstruc.2019.127236. [CrossRef] [Google Scholar]
  25. Ch. Panagiotopoulou, P.Μ. Angelopoulos, D. Kosmidi, I. Angelou, L. Sakellariou, M. Taxiarchou, Study of the influence of the addition of closed - structure expanded perlite microspheres on the density and compressive strength of cement pastes, Materials Today: Proceedings, Volume 54, Part 1, 2022, Pages 118-124, ISSN 2214-7853, https://doi.org/10.1016/j.matpr.2022.02.149. [Google Scholar]
  26. Amirhossein Madadi, Mahdi Tasdighi, Hamid Eskandari-Naddaf, Structural response of ferrocement panels incorporating lightweight expanded clay and perlite aggregates: Experimental, theoretical and statistical analysis, Engineering Structures, Volume 188, 2019, Pages 382-393, ISSN 0141-0296, https://doi.org/10.1016/j.engstruct.2019.03.038. [CrossRef] [Google Scholar]
  27. Muhammad Aslam, Payam Shafigh, Mohd Zamin Jumaat, Oil-palm by-products as lightweight aggregate in concrete mixture: a review, Journal of Cleaner Production, Volume 126, 2016, Pages 56-73, ISSN 0959-6526, https://doi.org/10.1016/j.jclepro.2016.03.100. [CrossRef] [Google Scholar]
  28. David Allinson, Matthew Hall, Hygrothermal analysis of a stabilised rammed earth test building in the UK, Energy and Buildings, Volume 42, Issue 6, 2010, Pages 845-852, ISSN 0378-7788, https://doi.org/10.1016/j.enbuild.2009.12.005. [CrossRef] [Google Scholar]
  29. Yahor Trambitski, Olga Kizinievič, Florindo Gaspar, Viktor Kizinievič, Joana F.A. Valente, Eco-friendly unfired clay materials modified by natural polysacharides, Construction and Building Materials, Volume 400, 2023, 132783, ISSN 0950-0618, https://doi.org/10.1016/j.conbuildmat.2023.132783. [CrossRef] [Google Scholar]
  30. Younoussa Millogo, Mohamed Hajjaji, Raguilnaba Ouedraogo, Microstructure and physical properties of lime-clay adobe bricks, Construction and Building Materials, Volume 22, Issue 12, 2008, Pages 2386-2392, ISSN 0950-0618, https://doi.org/10.1016/j.conbuildmat.2007.09.002. [CrossRef] [Google Scholar]
  31. E. de J. Jiménez-García, D.A. Arellano-Vazquez, S. Titotto, A.R. Vilchis-Nestor, M. Mayorga, L. Romero-Salazar, J.C Arteaga-Arcos, A low environmental impact admixture for the elaboration of unfired clay building bricks, Construction and Building Materials, Volume 407, 2023, 133470, ISSN 0950-0618, https://doi.org/10.1016/j.conbuildmat.2023.133470. [CrossRef] [Google Scholar]
  32. Prakash Dulal, Swastika Maharjan, Milan Prasad Timalsina, Yug Maharjan, Ashok Giri, Amrita Tamang, Engineering properties of cement-stabilized compressed earth bricks, Journal of Building Engineering, Volume 77, 2023, 107453, ISSN 2352-7102, https://doi.org/10.1016/j.jobe.2023.107453. [Google Scholar]
  33. BS EN 197-1:2011, Cement. Composition, specifications and conformity criteria for common cements, 2011. [Google Scholar]
  34. EN 1015-3. Methods of test for mortar for masonry – Part 3: Determination of consistence of fresh mortar (by flow table); 1999. [Google Scholar]
  35. A. Arizzi, G. Cultrone, Aerial lime-based mortars blended with a pozzolanic additive and different admixtures: A mineralogical, textural and physical-mechanical study, Construction and Building Materials, Volume 31, 2012, Pages 135-143, ISSN 0950-0618, https://doi.org/10.1016/j.conbuildmat.2011.12.069. [CrossRef] [Google Scholar]
  36. EN 1015-11. Methods of test for mortar for masonry. Part 11: Determination of flexural and compressive strength of hardened mortar; 1999. [Google Scholar]
  37. BS EN ISO 12570:2000 + A1:2013, Hygrothermal performance of building materials and products - Determination of moisture content by drying at elevated temperature, 2000. [Google Scholar]
  38. C. Feng, H. Janssen, C. Wu, Y. Feng, Q. Meng, Validating various measures to accelerate the static gravimetric sorption isotherm determination, Build. Environ. 69 (2013) 64–71, https://doi.org/10.1016/j.buildenv.2013.08.005. [Google Scholar]
  39. R. Ramirez, B. Ghiassi, P. Pineda, P.B. Lourenço, Experimental characterization of moisture transport in brick masonry with natural hydraulic lime mortar, Building and Environment, Volume 205, 2021, 108256, ISSN 0360-1323, https://doi.org/10.1016/j.buildenv.2021.108256. [Google Scholar]
  40. ISO 10545-3: 2018 (E), Ceramic Tiles - Part 3: Determination of Water Absorption, Apparent Porosity, Apparent Relative Density and Bulk Density, 2018. [Google Scholar]
  41. ASTM C1699 - 09, Standard Test Method for Moisture Retention Curves of Porous Building Materials Using Pressure Plates, 2015 [Google Scholar]
  42. ASTM C642 - 13, Standard Test Method for Density, Absorption, and Voids in Hardened Concrete, 2013 [Google Scholar]
  43. RILEM TC 25-PEM, Recommended tests to measure the deterioration of stone and to assess the effectiveness of treatment methods (Test No. I.1 Porosity accessible to water), Mat´eriaux Constr. 13 (1980) 176–179. [Google Scholar]
  44. ISO 15148: 2002(E), Hygrothermal Performance of Building Materials and Products—Determination of Water Absorption Coefficient by Partial Immersion, 2002. [Google Scholar]
  45. ASTM C1794 - 15, Standard Test Methods for Determination of the Water Absorption Coefficient by Partial Immersion, 2015. [Google Scholar]
  46. C. Feng, H. Janssen, Hygric properties of porous building materials (III): impact factors and data processing methods of the capillary absorption test, Build. Environ. 134 (2018) 21–34. [Google Scholar]
  47. R.J. Gummerson, C. Hall, W.D. Hoff, Water movement in porous building materials—II. Hydraulic suction and sorptivity of brick and other masonry materials, Building and Environment, Volume 15, Issue 2, 1980, Pages 101-108, ISSN 0360-1323, https://doi.org/10.1016/0360-1323(80)90015-3. [CrossRef] [Google Scholar]
  48. Pouran Pourhakkak, Mohsen Taghizadeh, Ali Taghizadeh, Mehrorang Ghaedi, Chapter 2 - Adsorbent, Editor(s): Mehrorang Ghaedi, Interface Science and Technology, Elsevier, Volume 33, 2021, Pages 71-210, ISSN 1573-4285, ISBN 9780128188057, https://doi.org/10.1016/B978-0-12-818805-7.00009-6. [Google Scholar]
  49. Kaufhold S, Dohrmann R, Klinkenberg M, Siegesmund S, Ufer K. N2-BET specific surface area of bentonites. J Colloid Interface Sci 2010;349: 275e82. [CrossRef] [Google Scholar]
  50. Murray HH. Applied clay mineralogy. Elsevier; 2007. [Google Scholar]
  51. M. Jamei, H. Guiras, Y. Chtourou, A. Kallel, E. Romero, I. Georgopoulos, Water retention properties of perlite as a material with crushable soft particles, Engineering Geology, Volume 122, Issues 3–4, 2011, Pages 261-271, ISSN 0013-7952, https://doi.org/10.1016/j.enggeo.2011.06.005. [CrossRef] [Google Scholar]
  52. Houren Xiong, Kelong Yuan, Jinming Xu, Minjie Wen, Pore structure, adsorption, and water absorption of expanded perlite mortar in external thermal insulation composite system during aging, Cement and Concrete Composites, Volume 116, 2021, 103900, ISSN 0958-9465, https://doi.org/10.1016/j.cemconcomp.2020.103900. [Google Scholar]
  53. Dalia Bednarska, Marcin Koniorczyk, Natalia Grzelak, Małgorzata Czyż, A contribution to preservation of salt-laden construction materials: An effective, eco-friendly and inexpensive system of renovation plasters, Journal of Building Engineering, Volume 83, 2024, 108444, ISSN 2352-7102, https://doi.org/10.1016/j.jobe.2024.108444. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.