Open Access
Issue |
MATEC Web Conf.
Volume 403, 2024
SUBLime Conference 2024 – Towards the Next Generation of Sustainable Masonry Systems: Mortars, Renders, Plasters and Other Challenges
|
|
---|---|---|
Article Number | 01002 | |
Number of page(s) | 11 | |
Section | Keynotes | |
DOI | https://doi.org/10.1051/matecconf/202440301002 | |
Published online | 16 September 2024 |
- W. D. Kingery, P. B. Vandiver, M. Prickett, The beginnings of pyrotechnology, part II: Production and use of lime and gypsum plaster in the Pre-Pottery Neolithic Near East. J. Field Archaeol. 15, 219–243 (1988). [CrossRef] [Google Scholar]
- C. Rodriguez-Navarro, T. Ilić, E. Ruiz-Agudo, K. Elert, Carbonation mechanisms and kinetics of lime-based binders: An overview. Cem. Concr. Res. 173, 107301 (2023). [CrossRef] [Google Scholar]
- G. Artioli, M. Secco, A. Addis, The Vitruvian legacy: Mortars and binders before and after the Roman world. EMU Notes Miner. 20, 151–202 (2019). [Google Scholar]
- P. Maravelaki-Kalaitzaki, A. Bakolas, A. Moropoulou, Physico-chemical study of Cretan ancient mortars. Cem. Concr. Res. 33, 651-661 (2003). [CrossRef] [Google Scholar]
- H.F. Taylor, Cement Chemistry. Thomas Telford, London (1997). [CrossRef] [Google Scholar]
- K. Elert, C. Rodriguez-Navarro, E. S. Pardo, E. Hansen, O. Cazalla, Lime mortars for the conservation of historic buildings. Stud. Conserv. 47, 62-75 (2002). [CrossRef] [Google Scholar]
- E. F. Hansen, C. Rodriguez-Navarro, K. Balen, Lime putties and mortars. Stud. Conserv. 53, 9-23 (2008). [CrossRef] [Google Scholar]
- A. Moropoulou, C. Koroneos, M. Karoglou, E. Aggelakopoulou, A. Bakolas, A. Dompros, Life cycle analysis of mortars and its environmental impact. MRS Proc. 895, 0895-G06-02 (2005) [CrossRef] [Google Scholar]
- T. Santos, J. Almeida, J. D. Silvestre, P. Faria, Life cycle assessment of mortars: A review on technical potential and drawbacks. Constr. Build. Mater. 288, 123069 (2021). [CrossRef] [Google Scholar]
- C. Rodriguez-Navarro, L. Monasterio-Guillot, M. Burgos-Ruiz, E. Ruiz-Agudo, K. Elert, Unveiling the secret of ancient Maya masons: Biomimetic lime plasters with plant extracts. Sci. Adv. 9, eadf6138 (2023). [CrossRef] [Google Scholar]
- P. Fratzl, Biomimetic materials research: what can we really learn from nature's structural materials?. J. Royal Soc. Interf. 4, 637-642 (2007). [CrossRef] [Google Scholar]
- U. G. Wegst, H. Bai, E. Saiz, A. P. Tomsia, R. O. Ritchie, Bioinspired structural materials. Nat. Mater. 14, 23-36 (2015). [CrossRef] [Google Scholar]
- H. A., Lowenstam, S. Weiner, On biomineralization. Oxford University Press, USA (1989). [Google Scholar]
- C. Rodriguez-Navarro, E. Ruiz-Agudo, J. Harris, S. E. Wolf, Nonclassical crystallization in vivo et in vitro (II): Nanogranular features in biomimetic minerals disclose a general colloid-mediated crystal growth mechanism. J. Struct. Biol. 196, 260-287 (2016). [CrossRef] [Google Scholar]
- Z. Deng, Z. Jia, L. Li, Biomineralized materials as model systems for structural composites: Intracrystalline structural features and their strengthening and toughening mechanisms. Adv. Sci. 9, e2103524 (2022). [CrossRef] [Google Scholar]
- M. E. Kunitake, L. M. Mangano, J. M. Peloquin, S. P. Baker, L. A. Estroff, Evaluation of strengthening mechanisms in calcite single crystals from mollusk shells. Acta Biomater. 9, 5353-5359 (2013). [CrossRef] [Google Scholar]
- E. Weber, B. Pokroy, Intracrystalline inclusions within single crystalline hosts: from biomineralization to bio-inspired crystal growth. CrystEngComm, 17, 5873-5883 (2015). [CrossRef] [Google Scholar]
- H. Gao, B. Ji, I. L. Jäger, E. Arzt, P. Fratzl, Materials become insensitive to flaws at nanoscale: lessons from nature. Proc. Natl. Acad. Sci. 100, 5597-5600 (2003). [CrossRef] [Google Scholar]
- F. C., Meldrum, H. Cölfen, Controlling mineral morphologies and structures in biological and synthetic systems. Chem. Rev. 108, 4332-4432 (2008). [CrossRef] [Google Scholar]
- C. Rodriguez-Navarro, Ö. Cizer, K. Kudłacz, A. Ibañez-Velasco, C. Ruiz-Agudo, K. Elert, A. Burgos-Cara, E. Ruiz-Agudo, The multiple roles of carbonic anhydrase in calcium carbonate mineralization. CrystEngComm, 21, 7407-7423 (2019). [CrossRef] [Google Scholar]
- Ö. Cizer, E. Ruiz-Agudo, C. Rodriguez-Navarro, Kinetic effect of carbonic anhydrase enzyme on the carbonation reaction of lime mortar. Int. J. Architect. Herit. 12, 779-789 (2018). [CrossRef] [Google Scholar]
- M. Zhang, S. Feng, L. Wang, Y. Zheng, Lotus effect in wetting and self-cleaning. Biotribology 5, 31-43 (2016). [CrossRef] [Google Scholar]
- K., Liu, X., Yao, L. Jiang, Recent developments in bio-inspired special wettability. Chemical Society Reviews, 39, 3240-3255 (2010). [CrossRef] [Google Scholar]
- C. Rodriguez-Navarro, E. Ruiz-Agudo, A. Burgos-Cara, K. Elert, E. F. Hansen, Crystallization and colloidal stabilization of Ca(OH)2 in the presence of nopal juice (Opuntia ficus indica): Implications in architectural heritage conservation. Langmuir 33, 10936-10950 (2017). [CrossRef] [Google Scholar]
- C. Rodriguez-Navarro, A. Burgos-Cara, F. D. Lorenzo, E. Ruiz-Agudo, K. Elert, Nonclassical crystallization of calcium hydroxide via amorphous precursors and the role of additives. Cryst. Growth Des. 20, 4418-4432 (2020). [CrossRef] [Google Scholar]
- L.-B. Sickels, Organics vs. synthetics: their use as additives in mortars. In: Mortars, cements and grouts used in the conservation of historic buildings, 25–52, ICCROM, Rome (1981). [Google Scholar]
- L. Ventola, M. Vendrell, P. Giraldez, L., Merino, Traditional organic additives improve lime mortars: new old materials for restoration and building natural stone fabrics. Constr. Build. Mater. 25, 3313–3318 (2011). [CrossRef] [Google Scholar]
- F. Yang, B. Zhang, Q. Ma, Study of sticky rice− Lime mortar technology for the restoration of historical masonry construction. Acc. Chem. Res. 43, 936–944 (2010). [CrossRef] [Google Scholar]
- N. Guasch-Ferré, J. L. Prada Pérez, M. L. V. de Agredos Pascual, L. Osete-Cortina, M. T. Doménech-Carbó, Polysaccharide remains in Maya mural paintings: Is it an evidence of the use of plant gums as binding medium of pigments and additive in the mortar? Sci. Tech. Archaeol. Res. 5, 200–220 (2019). [Google Scholar]
- H. Li, M. Eddaoudi, M. O'Keeffe, O. M. Yaghi, Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402, 276-279 (1999). [CrossRef] [Google Scholar]
- A. Phan, C. J. Doonan, F. J. Uribe-Romo, C. B. Knobler, M. O’keeffe, O. M. Yaghi, Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc. Chem. Res. 43, 58–67 (2010). [CrossRef] [PubMed] [Google Scholar]
- M. Ding, R. W. Flaig, H. L. Jiang, O. M. Yaghi, Carbon capture and conversion using metal–organic frameworks and MOF-based materials. Chem. Soc. Rev. 48, 2783-2828 (2019). [CrossRef] [Google Scholar]
- R. Hensel, C. Neinhuis, C. Werner, The springtail cuticle as a blueprint for omniphobic surfaces. Chem. Soc. Rev. 45, 323-341 (2016). [CrossRef] [Google Scholar]
- R. Meng, Y. Ma, X. Long, D. Yang, L. Qi, Calcite microrod arrays fabricated via anisotropic dissolution of calcite in the presence of NH4I and (NH4)2SO4. CrystEngComm 15, 8867-8873 (2013). [CrossRef] [Google Scholar]
- X. Long, R. Meng, W. Wu, Y. Ma, D. Yang, L. Qi, Calcite microneedle arrays produced by inorganic ion‐assisted anisotropic dissolution of bulk calcite crystal. Chem. Eur. J. 20, 4264-4272 (2014). [CrossRef] [Google Scholar]
- I. Karatasios, M. S. Katsiotis, V. Likodimos, A. I. Kontos, G. Papavassiliou, P. Falaras, V. Kilikoglou, Photo-induced carbonation of lime-TiO2 mortars. Appl .Catal. B Environm. 95, 78-86 (2010). [CrossRef] [Google Scholar]
- J. S. Pozo-Antonio, A. Dionísio, Self-cleaning property of mortars with TiO2 addition using real diesel exhaust soot. J. Clean. Product. 161, 850-859 (2017). [CrossRef] [Google Scholar]
- M. V. Orlov, Materials microencapsulation applications in oil drilling and production. J. Phys. Conf. Ser. 1942, 012004 (2021). [CrossRef] [Google Scholar]
- K. Van Tittelboom, N. De Belie, Self-healing in cementitious materials—A review. Materials 6, 2182-2217 (2013). [CrossRef] [Google Scholar]
- J. Y. Wang, H. Soens, W. Verstraete, N. De Belie, Self-healing concrete by use of microencapsulated bacterial spores. Cem. Concr. Res. 56, 139-152 (2014). [CrossRef] [Google Scholar]
- F. Jroundi, K. Elert, E. Ruiz-Agudo, M. T. Gonzalez-Muñoz, C. Rodriguez-Navarro, Bacterial diversity evolution in Maya plaster and stone following a bio-conservation treatment. Front. Microbiol. 11, 599144 (2020). [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.