Open Access
Issue
MATEC Web Conf.
Volume 401, 2024
21st International Conference on Manufacturing Research (ICMR2024)
Article Number 13008
Number of page(s) 6
Section Digital / Smart Manufacturing, and Industry 4.0
DOI https://doi.org/10.1051/matecconf/202440113008
Published online 27 August 2024
  1. O. Skeik, M. S. Erden, and X. Kong, 6D Pose Estimation for Precision Assembly, in 2022 IEEE 5th International Conference on Image Processing Applications and Systems (IPAS), Genova, Italy, 2022, pp. 1–6 (2022) [Google Scholar]
  2. Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox, PoseCNN: A Convolutional Neural Network for 6D Object Pose Estimation in Cluttered Scenes, Robotics: Science and Systems (RSS), (2018) [Google Scholar]
  3. A. S. Periyasamy, M. Schwarz, and S. Behnke, Robust 6D Object Pose Estimation in Cluttered Scenes Using Semantic Segmentation and Pose Regression Networks, in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), (2018) [Google Scholar]
  4. E. Brachmann, A. Krull, F. Michel, S. Gumhold, J. Shotton, and C. Rother, Learning 6D Object Pose Estimation Using 3D Object Coordinates, in Computer Vision – ECCV 2014, D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, (Eds). pp. 536–551. (Cham: Springer, 2014) [Google Scholar]
  5. H. Cheng, Y. Wang, and M.Q.-H. Meng, Real-time Robot End-effector Pose Estimation with Deep Network, in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), (2020) [Google Scholar]
  6. J. Tremblay, T. To, B. Sundaralingam, Y. Xiang, D. Fox, and S. Birchfield, Deep Object Pose Estimation for Semantic Robotic Grasping of Household Objects, in Proceedings of the 2nd Conference on Robot Learning, PMLR 87:306–316, (2018) [Google Scholar]
  7. K. Qian, Y. Zhang, Z. Li, P. A. Vargas, M. S. Erden, X. Kong, (Accepted/In press). Precision Robotic Assembly of Industrial Components with Robust Pose Estimation and Cooperative Manipulation, in Proceedings of the 25th IEEE International Conference on Industrial Technology (ICIT 2024), 2024, IEEE (2024) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.