Open Access
Issue |
MATEC Web Conf.
Volume 401, 2024
21st International Conference on Manufacturing Research (ICMR2024)
|
|
---|---|---|
Article Number | 12006 | |
Number of page(s) | 10 | |
Section | Robotics and Autonomous Systems for Advanced Manufacturing | |
DOI | https://doi.org/10.1051/matecconf/202440112006 | |
Published online | 27 August 2024 |
- H. Ravichandar, A. S. Polydoros, S. Chernova and A. Billard, Recent Advances in Robot Learning from Demonstration, Annu. Rev. Control Robot. Auton. Syst, vol. 3, pp. 297-330 (2020) [CrossRef] [Google Scholar]
- B. D. Argall, S. Chernova, M. Veloso and B. Browning, A survey of robot learning from demonstration, Robot. Auton. Syst, vol. 57, no. 5, pp. 469-483 (2009) [CrossRef] [Google Scholar]
- A. Billard, S. Calinon, R. Dillmann and S. Schaal, Robot Programming by Demonstration, in Springer Handbook of Robotics, p. 1371–1394 (2008) [Google Scholar]
- J. Kober, J. A. Bagnell and J. Peters, Reinforcement learning in robotics: A survey, Int. J. Robot. Res, vol. 32, no. 11, pp. 1238-1274, (2013) [CrossRef] [Google Scholar]
- A. Hussein , M. M. Gaber , E. Elyan and C. Jayne, Imitation Learning: A Survey of Learning Methods, ACM Comput. Surv, vol. 50, no. 2, pp. 1-35, (2017) [Google Scholar]
- C. Finn , I. Goodfellow and S. Levine, Unsupervised Learning for Physical Interaction through Video Prediction, in 30th Conference on Neural Information Processing Systems (NIPS 2016), (Barcelona, Spain, 2016) [Google Scholar]
- G. Pavlakos, X. Zhou, K. G. Derpanis and K. Daniilidis, Coarse-to-Fine Volumetric Prediction for Single-Image 3D Human Pose, in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (Honolulu, HI, USA, 2017) [Google Scholar]
- Y. Jadeja, M. Shafik and P. Wood, Computer Aided Design of Self-Learning Robotic System Using Imitation Learning, in International Conference of Manufacturing and Research, (Derby, 2022) [Google Scholar]
- J. J. Steil, F. Rothling, R. Haschke and H. Ritter, Situated robot learning for multi-modal instruction and imitation of grasping, Robot. Auton. Syst, vol. 47, no. 2-3, pp. 129-141, (2004) [CrossRef] [Google Scholar]
- W. Duch, J. Kacprzyk, E. Oja and S. Zadrożny, Action Understanding and Imitation Learning in a Robot-Human Task, in International Conference on Artificial Neural Networks, (Warsaw, Poland, 2005) [Google Scholar]
- G. Park, S. Ra, C. Kim and J. Song, Imitation Learning of Robot Movement Using Evolutionary Algorithm, in 17th World Congress The International Federation of Automatic Control, (Seoul, Korea, 2008) [Google Scholar]
- Y. Huang, L. Rozo, J. Silvério and D. G. Caldwell, Non-parametric Imitation Learning of Robot Motor Skills, in 2019 International Conference on Robotics and Automation (ICRA), (Montreal, QC, Canada, 2019) [Google Scholar]
- Z. Chen and M. Lin, Self-Imitation Learning for Robot Tasks with Sparse and Delayed Rewards, ArXIV, (2021) [Google Scholar]
- S. Stepputtis, J. Campbell, M. Phielipp, S. Lee, C. Baral and H. B. Amor, Language- conditioned imitation learning for robot manipulation tasks, in 34th International Conference on Neural Information Processing Systems, (Vancouver, Canada, 2020) [Google Scholar]
- C. D. S. Ompico, N. M. Bugtai and F. E. T. Munsayac Jr., Recent Developments on Social Robots and Imitation Learning for Robotic Therapy, J. Phys. Conf. Ser, vol. 2071, (2021) [Google Scholar]
- E. Johns, Coarse-to-Fine Imitation Learning: Robot Manipulation from a Single Demonstration, ArXIV, (2021) [Google Scholar]
- H. Kim, Y. Ohmura and Y. Kuniyoshi, Memory-based Gaze Prediction in Deep Imitation Learning for Robot Manipulation, ArXIV, (2022) [Google Scholar]
- O. Biza, S. Thompson, K. R. Pagidi, A. Kumar, E. v. d. Pol, R. Walters, T. Kipf, J.-W. v. d. Meent, L. L. S. Wong and R. Platt, One-shot Imitation Learning via Interaction Warping, ARXIV, (2023) [Google Scholar]
- F. Codevilla, E. Santana, A. M. Lopez and A. Gaidon, Exploring the Limitations of Behavior Cloning for Autonomous Driving, in Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), (2019) [Google Scholar]
- Z. Zhu and H. Zhao, A Survey of Deep RL and IL for Autonomous Driving Policy Learning, IEEE Transactions on Intelligent Transportation Systems , (2021) [Google Scholar]
- S. Arora, S. Du, S. Kakade, Y. Luo and N. U. Saunshi, Provable Representation Learning for Imitation Learning Via Bi-level Optimization, in 37 th International Conference on Machine Learning, (Vienna, Austria, 2020) [Google Scholar]
- A. Galashov, J. Merel and N. Heess, Data Augmentation for Efficient Learning from Parametric Experts, in 36th Conference on Neural Information Processing Systems , (2022) [Google Scholar]
- J. Wang, S. Dasari, M. K. Srirama, S. Tulsiani and A. Gupta, Manipulate By Seeing: Creating Manipulation Controllers from Pre-Trained Representations, in International Conference on Computer Vision (ICCV), (2023) [Google Scholar]
- Y. Shukla, B. Kesari, S. Goel, R. Wright and J. Sinapov, A Framework for Few-Shot Policy Transfer through Observation Mapping and Behavior Cloning, in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), (2023) [Google Scholar]
- K. Yan, A. Schwing and Y.-X. Wang, A Simple Solution for Offline Imitation from Observations and Examples with Possibly Incomplete Trajectories, in Neural Information Processing Systems (NeurIPS), (2023) [Google Scholar]
- S. Seo, H. Hwang, H. Yang and K.-E. Kim, Regularized Behavior Cloning for Blocking The Leakage of Past Action Information, in Neural Information Processing Systems, (2023) [Google Scholar]
- D. Pomerleau, ALVINN: Autonomous Land Vehicle In a Neural Network, in Proceedings of (NeurIPS) Neural Information Processing Systems, (1989) [Google Scholar]
- J. Kacprzyk (ed), Studies in Systems, Decision and Control, (Springer, 2015) [Google Scholar]
- M. Bojarski, D. D. Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao and K. Zieba, End to End Learning for Self-Driving Cars, ARXIV, (2016) [Google Scholar]
- T. Zhang, Solving large scale linear prediction problems using stochastic gradient descent algorithms, in 21st International conference on Machine learning, (2004) [Google Scholar]
- S. Deng, Y. Zhu, S. Duan, Z. Fu and Z. Liu, Stock Price Crash Warning in the Chinese Security Market Using a Machine Learning-Based Method and Financial Indicators, Systems, vol. 10, no. 4, (2022) [Google Scholar]
- Z. Qin, H. Ye, G. Y. Li and B.-H. F. Juang, Deep Learning in Physical Layer Communications, IEEE Wireless Commun, vol. 26, no. 2, pp. 93-99, (2019) [CrossRef] [Google Scholar]
- T.-H. Nguyen, K.-V. Thi Nguyen, V.-C. Ho and D. Nguyen, Efficient hybrid machine learning model for calculating load-bearing capacity of driven piles, Asian Journal of Civil Engineering, (2023) [Google Scholar]
- I. Goodfellow, Y. Bengio and A. Courville, Deep Learning, (MIT Press, 2016) [Google Scholar]
- S. Ross and D. Bagnell, Efficient Reductions for Imitation Learning, in International Conference on Artificial Intelligence and Statistics, (2010) [Google Scholar]
- A. Peng, Leveraging Humans to Detect and Fix Representation Misalignment, Massachusetts Institute of Technology, (2023) [Google Scholar]
- A. I. Arvanitidis, L. A. Valdez and M. Alamaniotis, A Quantum Machine Learning Methodology for Precise Appliance Identification in Smart Grids, in 14th International Conference on Information, Intelligence, Systems & Applications, (2023) [Google Scholar]
- A. A. S. Nurfarahin, D. R. Akamam and M. N. Norliza, Transfer Learning with pre- trained CNNS for MRI brain tumor Multi-classification: A Comparative Study of VGG16, VGG19, and Inception Models, in 2023 IEEE 2nd National Biomedical Engineering Conference (NBEC), (2023) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.