Open Access
Issue
MATEC Web Conf.
Volume 401, 2024
21st International Conference on Manufacturing Research (ICMR2024)
Article Number 10010
Number of page(s) 8
Section Manufacturing / Engineering Management
DOI https://doi.org/10.1051/matecconf/202440110010
Published online 27 August 2024
  1. Hao Wang, Xiaowei Chen, Fu Jia, Xiaojuan Cheng. Digital twin-supported smart city: Status, challenges and future research directions. Journal of Expert Systems with Applications, 217 (2023). https://doi.org/10.1016/j.eswa.2023.119531. [Google Scholar]
  2. DIATOMIC Project. https://digitalbirmingham.co.uk/diatomic/. Acc 25-30 April 2024. [Google Scholar]
  3. Fuel Cell Electric Vehicles - Alternative Fuels Data Center. https://afdc.energy.gov/vehicles/fuel-cell. Accessed 25-30 April 2024. [Google Scholar]
  4. D. De Wolf, Y. Smeers. Comparison of Battery Electric Vehicles and Fuel Cell Vehicles. World Electr. Veh. J. 4, 262, (2023). https://doi.org/10.3390/wevj14090262 [CrossRef] [Google Scholar]
  5. M. Zhang, T. Awotwe, C. Liu, A. Amiri and Y. Xu. Digital-Twin Enabled Online Remaining Useful Life Prediction of PEM Fuel Cell. 28th International Conference on Automation and Computing (ICAC), UK (2023). https://doi.org/10.1109/ICAC57885.2023.10275304. [Google Scholar]
  6. D. Piromalis, A. Kantaros. Digital Twins in the Automotive Industry: The Road toward Physical-Digital Convergence. Appl. Syst. Innov. J, (2022). https://doi.org/10.3390/asi5040065. [Google Scholar]
  7. CL. Ramakrishnan. The Role of Digital Twin in the Automotive Industry in 2024. https://www.toobler.com/blog/digital-twin-automotive-industry. Acc 25-30 April 2024. [Google Scholar]
  8. Q. Lu, X. Xie, A. K. Parlikad, J. M. Schooling. Digital twin-enabled anomaly detection for built asset monitoring in operation and maintenance. Automation in Construction (2020). [Google Scholar]
  9. C. Gao, H. Park, A. Easwaran. An anomaly detection framework for digital twin driven cyber-physical systems. In Proceedings of the ACM/IEEE 12th International Conference on Cyber-Physical Systems, (2021). [Google Scholar]
  10. A. Vasilyev, J. Andrews, S. Dunnett, and L. Jackson. Dynamic reliability assessment of PEM fuel cell systems. Reliability Engineering & System Safety, (2021). https://doi.org/10.1016/j.ress.2021.107539 [Google Scholar]
  11. A. Vasilyev. Modelling Polymer Electrolyte Membrane Fuel Cells for Dynamic Reliability Assessment. Doctoral Thesis. Loughborough University, (2019). [Google Scholar]
  12. P. Oliveira, V. Andrea, E. Santiago, T. Lopes, D. Andrade, and M. Linardi. A Reliability-Based Strategy for the Analysis of Single Proton Exchange Membrane Fuel Cells. Energy and Power Engineering, (2019). https://doi.org/10.4236/epe.2019.118019 [Google Scholar]
  13. E. Carlson, P. Kopf, J. Sinha, S. Sriramulu, and Y. Yang Cost Analysis of PEM Fuel Cell Systems for Transportation. Report at National Renewable Energy Laboratory. USA (2005). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.