Open Access
Issue
MATEC Web Conf.
Volume 401, 2024
21st International Conference on Manufacturing Research (ICMR2024)
Article Number 10008
Number of page(s) 6
Section Manufacturing / Engineering Management
DOI https://doi.org/10.1051/matecconf/202440110008
Published online 27 August 2024
  1. L. Jie, L. Gang, M. Xin, The Construction of Knowledge Management System and Model in Electric Power Enterprises. In Proceedings of the 2010 International Conference of Information Science and Management Engineering, 7-8 Aug. 2010, pp. 79-84 (2010) [Google Scholar]
  2. K. J. Kumar, R. Sharma, J. Inf. Knowl. Manag 21 (03), 2250040 (2022) [CrossRef] [Google Scholar]
  3. E. G. Ochieng, O. O. Ovbagbedia, T. Zuofa, R. Abdulai, W. Matipa, X. Ruan, A. Oledinma, Inf. Technol. People, 31 (1), 527-556 (2018) [CrossRef] [Google Scholar]
  4. T. Masood, J. A. Erkoyuncu, R. Roy, A. Harrison, CIRP J. Manuf. Sci. Technol, 7 (2), 83-96 (2014) [CrossRef] [Google Scholar]
  5. C. -P. Simion, C. -A. Verdeș, A. -A. Mironescu, F. -G. Anghel, Energies, 16 (4), 1960 (2023) [CrossRef] [Google Scholar]
  6. A. V. Chernov, V. A. Chernova, T. V. Komarova, The Usage of Artificial Intelligence in Strategic Decision Making in Terms of Fourth Industrial Revolution. In Proceedings of the 1st International Conference on Emerging Trends and Challenges in the Management Theory and Practice (ETCMTP 2019), 22-25, (2020) [Google Scholar]
  7. S. Feuerriegel, J. Hartmann, C. Janiesch, P. Zschech, Generative AI. Bus. Inf. Syst. Eng, 66, 111-126 (2023). [Google Scholar]
  8. T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, Language models are few-shot learners. Adv. Neural Inf. Process. Syst, 33, 1877-1901 (2020) [Google Scholar]
  9. Meta. Llama 3. Available online: https://llama.meta.com/llama3/ (accessed on 24/4). [Google Scholar]
  10. L. Dong, S. Majumder, F. Doudi, Y. Cai, C. Tian, D. Kalathi, K. Ding, A. A. Thatte, L. Xie, Joule 8 (6), 1544-1549 (2024) [CrossRef] [Google Scholar]
  11. H. Wang, Y. F. Li, Large Language Model Empowered by Domain-Specific Knowledge Base for Industrial Equipment Operation and Maintenance. In Proceedings of the 2023 5th International Conference on System Reliability and Safety Engineering (SRSE), 20-23 Oct. 2023, pp. 474-479 (2023) [Google Scholar]
  12. F. A.AlSelami, I. M.ELEmary, H. M.Alamoudi, Int. J. Eng. Res. Technol 13 (4), 744 (2020). [CrossRef] [Google Scholar]
  13. Z. Ji, T. Yu, Y. Xu, N. Lee, E. Ishii, P. Fung, Towards Mitigating LLM Hallucination via Self Reflection. In Proceedings of the Conference on Empirical Methods in Natural Language Processing, (2023) [Google Scholar]
  14. Langchain. LangGraph. Available online: https://python.langchain.com/docs/langgraph/ (accessed on 25/4). [Google Scholar]
  15. S. Jeong, J. Baek, S. Cho, S. J. Hwang, J. C. Park, Adaptive-RAG: Learning to Adapt Retrieval-Augmented Large Language Models through Question Complexity. in Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, June 2024m Mexico City, Mexico 7036-7050 (2024) [Google Scholar]
  16. S. -Q. Yan, J. -C. Gu, Y. Zhu, Z. -H. Ling, Corrective Retrieval Augmented Generation. arXiv preprint arXiv:2401.15884 (2024) [Google Scholar]
  17. A. Asai, Z. Wu, Y. Wang, A. Sil, H. Hajishirzi, Self-rag: Learning to retrieve, generate, and critique through self-reflection. arXiv preprint arXiv:2310.11511 (2023) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.