Open Access
Issue
MATEC Web Conf.
Volume 400, 2024
5th International Conference on Sustainable Practices and Innovations in Civil Engineering (SPICE 2024)
Article Number 03007
Number of page(s) 21
Section Structural and Transportation Engineering
DOI https://doi.org/10.1051/matecconf/202440003007
Published online 03 July 2024
  1. Jackson, R. B., Le Quéré, C., Andrew, R. M., Canadell, J. G., Korsbakken, J. I., Liu, Z., ... & Zheng, B. (2018). Global energy growth is outpacing decarbonization. Environmental Research Letters, 13(12), 120401. DOI 10.1088/1748-9326/aaf303. [CrossRef] [Google Scholar]
  2. Varadi, P. F. (2014). Sun above the horizon: Meteoric rise of the solar industry (Vol. 5). CRC Press. [CrossRef] [Google Scholar]
  3. Harris, J. M., & Roach, B. (2021). The Theory of Environmental Externalities. In Environmental and Natural Resource Economics (pp. 44–92). Routledge. [CrossRef] [Google Scholar]
  4. Lutz, W. (Ed.). (2013). The future population of the world: what can we assume today? Routledge. [CrossRef] [Google Scholar]
  5. Ahmad, M., Beddu, S., binti Itam, Z., & Alanimi, F. B. I. (2019). State of the art compendium of macro and micro energies. Advances in Science and Technology Research Journal. Volume 13, Issue 1, March 2019, pages 88–109 https://doi.org/10.12913/22998624/103425 [CrossRef] [Google Scholar]
  6. Soeder, D. J., & Soeder, D. J. (2021). Fossil fuels and climate change. Fracking and the Environment: A scientific assessment of the environmental risks from hydraulic fracturing and fossil fuels, 155–185. [CrossRef] [Google Scholar]
  7. World Energy Council (2016). World Energy Resources 2016. World Energy Council, London, UK. [Google Scholar]
  8. Khaligh, A., & Onar, O. C. (2017). Energy harvesting: solar, wind, and ocean energy conversion systems. CRC press. [Google Scholar]
  9. Duarte, F., & Ferreira, A. (2016). Energy harvesting on road pavements: state of the art. Proceedings of the Institution of Civil Engineers-Energy, 169(2), 79–90. https://doi.org/10.1680/jener.15.00005. [CrossRef] [Google Scholar]
  10. Roshani, H., Dessouky, S., Montoya, A., & Papagiannakis, A. T. (2016). Energy harvesting from asphalt pavement roadways vehicle-induced stresses: A feasibility study. Applied Energy, 182, 210–218. https://doi.org/10.1016/j.apenergy.2016.08.116 [CrossRef] [Google Scholar]
  11. Shi, X. (2014). Controlling thermal properties of asphalt concrete and its multifunctional applications. [Doctoral dissertation]. Google Scholar. [Google Scholar]
  12. Beddu, S., Itam, Z. B., Ahmad, M., Alanimi, F. B. I., & Zainoodin, M. (2018). Thermal behaviour of asphalt pavement as an active solar collector under Malaysian climate conditions using a rubber tube. Journal of Engineering and Applied Sciences, 13: 1690–1695. DOI: 10.36478/jeasci.2018.1690.1695. [Google Scholar]
  13. Wendel I.L. (1979). Paving and solar energy system and method. United States, patent of invention US 4.132.074, 01-02-1979; 1979. Google Scholar. [Google Scholar]
  14. Beddu, S., Talib, S. H. A., & Itam, Z. (2016, March). The Potential of Heat Collection from Solar Radiation in Asphalt Solar Collectors in Malaysia. In IOP Conference Series: Earth and Environmental Science (Vol. 32, No. 1, p. 012045). IOP Publishing. https://doi.org/10.1088/1755-1315/32/1/012045. [CrossRef] [Google Scholar]
  15. Dezfooli, A. S., Nejad, F. M., Zakeri, H., & Kazemifard, S. (2017). Solar pavement: A new emerging technology. Solar Energy, 149, 272–284. https://doi.org/10.1016/j.solener.2017.04.016 [CrossRef] [Google Scholar]
  16. Harb A. (2011). Energy harvesting: State-of-the-art. Renewable Energy. 1;36(10):2641–54. doi.org/10.1016/j.renene.2010.06.014. [CrossRef] [Google Scholar]
  17. Konovalov, V., Pogharnitskaya, O., Rostovshchikova, A., & Matveenko, I. (2015, October). Potential of renewable and alternative energy sources. In IOP Conference Series: Earth and Environmental Science (Vol. 27, No. 1, p. 012068). IOP Publishing. [CrossRef] [Google Scholar]
  18. Pan, P., Wu, S., Xiao, Y., & Liu, G. (2015). A review on hydronic asphalt pavement for energy harvesting and snow melting. Renewable and Sustainable Energy Reviews, 48, 624–634. doi.org/10.1016/j.rser.2015.04.029. [CrossRef] [Google Scholar]
  19. Petkova-Slipets, R., & Zlateva, P. (2018). Thermal properties of a new pavement material for use in road construction. Civil and environmental engineering, 14(2), 99–104. doi: 10.2478/cee-2018-0013. [CrossRef] [Google Scholar]
  20. Hendel, M., Colombert, M., Diab, Y., & Royon, L. (2014). Improving a pavement-watering method on the basis of pavement surface temperature measurements. Urban Climate, 10, 189–200. doi: 10.1016/j.uclim.2014.11.002. [Google Scholar]
  21. Jiang, W., Huang, Y., & Sha, A. (2018). A review of eco-friendly functional road materials. Construction and Building Materials, 191, 1082–1092. doi: 10.1016/j.conbuildmat.2018.10.082. [CrossRef] [Google Scholar]
  22. Jiao, W., Sha, A., Liu, Z., Li, W., Jiang, W., Qin, W., & Hu, Y. (2020). Study on thermal properties of steel slag asphalt concrete for snow-melting pavement. Journal of Cleaner Production, 277, 123574. 10.1016/j.jclepro.2020.123574. [CrossRef] [Google Scholar]
  23. Bobes-Jesus, V., Pascual-Muñoz, P., Castro-Fresno, D., & Rodriguez-Hernandez, J. (2013). Asphalt solar collectors: a literature review. Applied Energy, 102, 962–970. https://doi.org/10.1016/j.apenergy.2012.08.050 [CrossRef] [Google Scholar]
  24. Shi, X., Rew, Y., Ivers, E., Shon, C. S., Stenger, E. M., & Park, P. (2019). Effects of thermally modified asphalt concrete on pavement temperature. International Journal of Pavement Engineering, 20(6), 669–681. https://doi.org/10.1080/10298436.2017.1326234. [CrossRef] [Google Scholar]
  25. Dudley, B. (2018). BP statistical review of World Energy 2018. Energy Economics, Centre for Energy Economics Research and Policy. British Petroleum, Available via https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy/electricity.html, 5. [Google Scholar]
  26. Kannan, N., & Vakeesan, D. (2016). Solar energy for future world: -A review. Renewable and Sustainable Energy Reviews, 62, 1092–1105. doi.org/10.1016/j.rser.2016.05.022 [CrossRef] [Google Scholar]
  27. Dincer, I., & Rosen, M. A. (2021). Thermal energy storage systems and applications. John Wiley & Sons. [CrossRef] [Google Scholar]
  28. Cengel, Y. (2002). Heat Transfer: A Practical Approach. New York, McGraw-Hill Companies, Inc. [Google Scholar]
  29. Serth, R. W., & Lestina, T. G. (2014). 1-Heat conduction. Process Heat Transfer (2nd Edition), 1–30. [Google Scholar]
  30. Xu, H. J., Xing, Z. B., Wang, F. Q., & Cheng, Z. M. (2019). Review on heat conduction, heat convection, thermal radiation and phase change heat transfer of nanofluids in porous media: Fundamentals and applications. Chemical Engineering Science, 195, 462–483. [CrossRef] [Google Scholar]
  31. Garg, H. P., Mullick, S. C., & Bhargava, V. K. (2012). Solar thermal energy storage. Springer Science & Business Media. [Google Scholar]
  32. DeKay, M., & Brown, G. Z. (2013). Sun, wind, and light: architectural design strategies. John Wiley & Sons. [Google Scholar]
  33. Kabir, E., Kumar, P., Kumar, S., & Adelodun, A. A. (2018). Ki-Hyun Kim. Solar energy: Potential and future prospect. Renewable and Sustainable Energy Reviews, 82(1), 894–900. doi.org/10.1016/j.rser.2017.09.094 [CrossRef] [Google Scholar]
  34. Reddy, V. S., Kaushik, S. C., Ranjan, K. R., & Tyagi, S. K. (2013). State-of-the-art of solar thermal power plants—A review. Renewable and Sustainable Energy Reviews, 27, 258–273. doi.org/10.1016/j.rser.2013.06.037. [CrossRef] [Google Scholar]
  35. Tietenberg, T., & Lewis, L. (2018). Environmental and natural resource economics. Routledge. [CrossRef] [Google Scholar]
  36. Besarati, S. M., Padilla, R. V., Goswami, D. Y., & Stefanakos, E. (2013). The potential of harnessing solar radiation in Iran: Generating solar maps and viability study of PV power plants. Renewable energy, 53, 193–199. doi.org/10.1016/j.renene.2012.11.012. [CrossRef] [Google Scholar]
  37. Castillo, C. P., e Silva, F. B., & Lavalle, C. (2016). An assessment of the regional potential for solar power generation in EU-28. Energy policy, 88, 86–99. doi.org/10.1016/j.enpol.2015.10.004 [CrossRef] [Google Scholar]
  38. Hernandez, R. R., Easter, S. B., Murphy-Mariscal, M. L., Maestre, F. T., Tavassoli, M., Allen, E. B. & Allen, M. F. (2014). Environmental impacts of utility-scale solar energy. Renewable and sustainable energy reviews, 29, 766–779. doi.org/10.1016/j.rser.2013.08.041 [CrossRef] [Google Scholar]
  39. Irena, R. E. (2017). Accelerating the global energy transformation. International Renewable Energy Agency, Abu Dhabi. [Google Scholar]
  40. Singh, G. K. (2013). Solar power generation by PV (photovoltaic) technology: A review. Energy, 53, 1–13. doi.org/10.1016/j.energy.2013.02.057 [CrossRef] [Google Scholar]
  41. Ferreira, A. J. L. (2012, December). Briefing: Recent developments in pavement energy harvest systems. In Proceedings of the Institution of Civil Engineers-Municipal Engineer (Vol. 165, No. 4, pp. 189–192). Thomas Telford Ltd. doi.org/10.1680/muen.12.00025 [CrossRef] [Google Scholar]
  42. Mallick, R. B., Chen, B. L., & Bhowmick, S. (2009). Harvesting energy from asphalt pavements and reducing the heat island effect. International Journal of Sustainable Engineering, 2(3), 214–228. doi: 10.1080/19397030903121950. [CrossRef] [Google Scholar]
  43. Mallick, R. B., Chen, B. L., & Bhowmick, S. (2012). Harvesting heat energy from asphalt pavements: development of and comparison between numerical models and experiment. International Journal of Sustainable Engineering, 5(2), 159–169. [CrossRef] [Google Scholar]
  44. Vo, H. V., & Park, D. W. (2017). Application of conductive materials to asphalt pavement. Advances in Materials Science and Engineering, 2017. doi: 10.1155/2017/4101503. [Google Scholar]
  45. Li, Z., Xu, X., Sheng, X., Lin, P., Tang, J., Pan, L., ... & Yamauchi, Y. (2021). Solar-powered sustainable water production: state-of-the-art technologies for sunlight–energy–water nexus. ACS nano, 15(8), 12535–12566. [CrossRef] [Google Scholar]
  46. Sadhishkumar, S., & Balusamy, T. (2014). Performance improvement in solar water heating systems—A review. Renewable and Sustainable Energy Reviews, 37, 191–198. [CrossRef] [Google Scholar]
  47. Datta, U., Dessouky, S., & Papagiannakis, A. T. (2017). Harvesting thermoelectric energy from asphalt pavements. Transportation Research Record, 2628(1), 12–22. DOI: 10.3141/2628-02 [CrossRef] [Google Scholar]
  48. Hendrowati, W., Guntur, H. L., & Sutantra, I. N. (2012). Design, modeling and analysis of implementing a multilayer piezoelectric vibration energy harvesting mechanism in the vehicle suspension. Engineering 4(11): 728–738. [CrossRef] [Google Scholar]
  49. García, A., & Partl, M. N. (2014). How to transform an asphalt concrete pavement into a solar turbine. Applied Energy, 119, 431–437. doi.org/10.1016/j.apenergy.2014.01.006 [CrossRef] [Google Scholar]
  50. Dawson, A. R., Dehdezi, P. K., Hall, M. R., Wang, J., & Isola, R. (2012). Enhancing thermal properties of asphalt materials for heat storage and transfer applications. Road Materials and Pavement Design, 13(4), 784–803. https://doi.org/10.1080/14680629.2012.735791. [CrossRef] [Google Scholar]
  51. Gao, Q., Huang, Y., Li, M., Liu, Y., & Yan, Y. Y. (2010). Experimental study of slab solar collection on the hydronic system of road. Solar energy, 84(12), 2096–2102. https://doi.org/10.1016/j.solener.2010.09.008 [CrossRef] [Google Scholar]
  52. Gao, J. P., Fan, T. T., & Ping, K. L. (2021). Influence of Freeze–Thaw Cycles on Thermal Conductivity, Water Permeability and Mechanical Properties of Asphalt Mixtures. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 45(2), 953–962. https://doi.org/10.1007/s40996-020-00491-w [CrossRef] [Google Scholar]
  53. Lund, J. W. (2002). Pavement snow melting. Geo-Heat Center, Oregon Institute of Technology, Klamath Falls. Google Scholar. [Google Scholar]
  54. Sarbu, I., & Adam, M. (2011). Applications of solar energy for domestic hot water and buildings heating/cooling. international journal of energy, 2(5), 34–42. Google Scholar. [Google Scholar]
  55. d’Antoni, M., & Saro, O. (2012). Massive solar-thermal collectors: a critical literature review. Renewable and Sustainable Energy Reviews, 16(6), 3666–3679. https://doi.org/10.1016/j.rser.2012.02.076 [CrossRef] [Google Scholar]
  56. Wu, G. (2013). Computer-Aided Design of Thermal Energy Harvesting System across Pavement Structure. International Journal of Pavement Research & Technology, 6(2). DOI: 10.6135/ijprt.org.tw/2013.6(2).73 [Google Scholar]
  57. Loomans, M., Oversloot, H., De Bondt, A., Jansen, R., & Van Rij, H. (2003, August). Design tool for the thermal energy potential of asphalt pavements. In Eighth International IBPSA Conference, Eindhoven, Netherlands (pp. 745–752). Google Scholar. [Google Scholar]
  58. Khoja, A. O., & Waheeb, S. A. (2016). Exploring the potentials of asphalt solar collectors in hot, humid climates. Innov Ener Res, 5(141), 2. [Google Scholar]
  59. Goldsmith, A., Waterman, T. E., & Hirschhorn, H. J. (1961). Handbook of Thermophysical Properties of Solid Materials. Vol. I. Elements (Melting Temperature above 1000° F). American Journal of Physics, 29(11), 795–795. https://doi.org/10.1119/1.1937612. [CrossRef] [Google Scholar]
  60. Valencia, J. J., & Quested, P. N. (2013). Thermophysical properties. DOI: 10.1361/asmhba0005240. [Google Scholar]
  61. Lemmon, E. (2009), Thermophysical Properties of fluids, Crc, Crc, Co (Accessed July 10, 2023) [Google Scholar]
  62. Islam, M. R., & Tarefder, R. A. (2014). Determining thermal properties of asphalt concrete using field data and laboratory testing. Construction and Building Materials, 67, 297–306. https://doi.org/10.1016/j.conbuildmat.2014.03.040. [CrossRef] [Google Scholar]
  63. Barber, E. S. (1957). Calculation of maximum pavement temperatures from weather reports. Highway Research Board Bulletin, (168). http://onlinepubs.trb.org/Onlinepubs/hrbbulletin/168/168-001.pdf. [Google Scholar]
  64. Adwan, I., Milad, A., Memon, Z. A., Widyatmoko, I., Ahmat Zanuri, N., Memon, N. A., & Yusoff, N. I. M. (2021). Asphalt pavement temperature prediction models: A review. Applied Sciences, 11(9), 3794. https://doi.org/10.3390/app11093794 [CrossRef] [Google Scholar]
  65. Han, R., Jin, X., & Glover, C. J. (2011). Modeling pavement temperature for use in binder oxidation models and pavement performance prediction. Journal of Materials in Civil Engineering, 23(4), 351–359. doi.org/10.1061/(ASCE)MT.1943-5533.0000169 [CrossRef] [Google Scholar]
  66. Yavuzturk, C., Ksaibati, K., & Chiasson, A. D. (2005). Assessment of temperature fluctuations in asphalt pavements due to thermal environmental conditions using a two-dimensional, transient finite-difference approach. Journal of Materials in Civil Engineering, 17(4), 465–475. https://doi.org/10.1061/(ASCE)0899-1561(2005)17:4(465). [CrossRef] [Google Scholar]
  67. Kallas, B. F. (1966). Asphalt pavement temperatures. Highway Research Record, (150). https://onlinepubs.trb.org/Onlinepubs/hrr/1966/150/150-001.pdf. [Google Scholar]
  68. Liu, C., & Yuan, D. (2000). Temperature distribution in layered road structures. Journal of Transportation Engineering, 126(1), 93–95. https://doi.org/10.1061/(ASCE)0733947X(2000)126:1(93). [CrossRef] [Google Scholar]
  69. Ariawan, I. M. A., Subagio, B. S., & Setiadji, B. H. (2015). Analysis of the Integrated Model of Climatic Effects on Pavements. Procedia Eng, 125, 474–480. doi: 10.1016/j.proeng.2015.11.126. [CrossRef] [Google Scholar]
  70. Ahmad, M., Itam, Z. B., Beddu, S., Alanimi, F. B. I., & Soanathan, S. A. (2018). A determination of solar heat collection in sepertine copper and rubber pipe embedded in asphalt pavement using finite element method. Journal of Engineering and Applied Sciences, Vol 13:1: 181–89. 10.3923/jeasci.2018.181.189. [Google Scholar]
  71. Hermansson, Å. (2000). Simulation model for calculating pavement temperatures including maximum temperature. Transportation Research Record, 1699(1), 134–141. https://doi.org/10.3141/1699-19. [CrossRef] [Google Scholar]
  72. Teltayev, B. B., & Suppes, E. A. (2019). Temperature in pavement and subgrade and its effect on moisture. Case studies in thermal engineering, 13, 100363. DOI:10.1016/j.csite.2018.11.014. [CrossRef] [Google Scholar]
  73. Salem-Hassan, A. (2015). Research of the relevant temperatures for the design of pavement constructions on the desert roads in Libya. [PhD Thesis, Univerisyt of Универзитет у Новом Саду]. https://nardus.mpn.gov.rs/handle/123456789/12075. [Google Scholar]
  74. Solatifar, N., Abbasghorbani, M., Kavussi, A., & Sivilevičius, H. (2018). Prediction of depth temperature of asphalt layers in hot climate area. Journal of Civil Engineering and Management, 24(7), 516–525. https://doi.org/10.3846/jcem.2018.6162. [CrossRef] [Google Scholar]
  75. Wang, H., Wu, S., Chen, M., & Zhang, Y. (2010). Numerical simulation on the thermal response of heat-conducting asphalt pavements. Physica Scripta, 2010(T139), 014041. https://doi.org/10.1088/0031-8949/2010/T139/014041. [CrossRef] [Google Scholar]
  76. Hashim, G. A., & Sidik, N. C. (2014). Numerical study of harvesting solar energy from small-scale asphalt solar collector. Journal of Advanced Research Design, 2, 10–19. [Google Scholar]
  77. Zaim, E. H., Farzan, H., & Ameri, M. (2020). Assessment of pipe configurations on heat dynamics and performance of pavement solar collectors: An experimental and numerical study. Sustainable Energy Technologies and Assessments, 37, 100635. https://doi.org/10.1016/j.seta.2020.100635. [CrossRef] [Google Scholar]
  78. Vuye, C., Guldentops, G., Rahbar, N., & Mahdavi Nejad, A. (2016). Analysis of a heat-exchanging asphalt layer using a finite element approach. In Proceedings of the 6th Eurasphalt and Eurobitume Congress, 13 June 2016, Prague, Czech Republic (pp. 1–12). doi.org/10.14311/EE.2016.361. [Google Scholar]
  79. Zhou, Z., Wang, X., Zhang, X., Chen, G., Zuo, J., & Pullen, S. (2015). Effectiveness of pavementsolar energy system–An experimental study. Applied energy, 138, 1–10. http://dx.doi.org/10.1016/j.apenergy.2014.10.045. [CrossRef] [Google Scholar]
  80. Wu, S., Wang, H., Chen, M., & Zhang, Y. (2010, June). Numerical and experimental validation of full-depth asphalt slab using capturing solar energy. In 2010 4th International Conference on Bioinformatics and Biomedical Engineering (pp. 1–4). IEEE. DOI: 10.1109/ICBBE.2010.5517215 [Google Scholar]
  81. Chen, M., Wu, S., Wang, H., & Zhang, J. (2011). Study of ice and snow melting process on conductive asphalt solar collector. Solar Energy Materials and Solar Cells, 95(12), 3241–3250. doi: 10.1016/j.solmat.2011.07.013. [CrossRef] [Google Scholar]
  82. Chiarelli, A., Dawson, A. R., & Garcia, A. (2017). Field evaluation of the effects of air convection in energy harvesting asphalt pavements. Sustainable Energy Technologies and Assessments, 21, 50–58. doi.org/10.1016/j.seta.2017.04.001 [CrossRef] [Google Scholar]
  83. Talib, S. H. A., Hashim, S. I. N. S., Beddu, S., Maidin, A. F., & Abustan, M. S. (2017). Heat Lump in Different Pavement Layer Using Ethylene Glycol as A Solar Heat Collector. In MATEC Web of Conferences (Vol. 87, p. 01015). EDP Sciences. DOI: 10.105/matecconf/20178701015. [Google Scholar]
  84. Johnsson, J., & Adl-Zarrabi, B. (2020). A numerical and experimental study of a pavement solar collector for the northern hemisphere. Applied Energy, 260, 114286. https://doi.org/10.1016/j.apenergy.2019.114286. [CrossRef] [Google Scholar]
  85. Zhou, B., Pei, J., Hughes, B. R., Nasir, D. S., Vital, B., Pantua, C. A. J., & Zhang, J. (2021). Structural response analysis of road pavement solar collector (RPSC) with serpentine heat pipes under validated temperature field. Construction and Building Materials, 268, 121110. https://doi.org/10.1016/j.conbuildmat.2020.121110 [CrossRef] [Google Scholar]
  86. Basheer Sheeba, J., & Krishnan Rohini, A. (2014). Structural and thermal analysis of asphalt solar collector using finite element method. Journal of Energy, 2014. doi: 10.1155/2014/602087. [Google Scholar]
  87. Chen, B. L., Rockett, L., & Mallick, R. B. (2008). A laboratory investigation of temperature profiles and thermal properties of asphalt pavements with different subsurface layers. Journal of the Association of Asphalt Paving Technologists, 77. http://worldcat.org/issn/02702932. [Google Scholar]
  88. Chiou, J. P. (1982). The effect of nonuniform fluid flow distribution on the thermal performance of solar collector. Solar Energy, 29(6), 487–502. https://doi.org/10.1016/0038-092X(82)90057-3. [CrossRef] [Google Scholar]
  89. Bava, F., Furbo, S., & Brunger, A. (2015). Correction of collector efficiency depending on variations of collector type, solar collector fluid, volume flow rate and collector tilt. IEA-SHC Info Sheet, 45. [Master Thesis, Technical University of Denmark and Alfred Brunger, EXOVA, Canada]. https://task45.iea-shc.org/fact-sheets. [Google Scholar]
  90. Zwarycz, K. (2002). Snow melting and heating systems based on geothermal heat pumps at Goleniow Airport, Poland. United Nations University. https://orkustofnun.is/gogn/flytja/JHS-Skjol/Yearbook2002/21Katarzyna.pdf. [Google Scholar]
  91. Wang, H., & Qi, C. (2008). Performance study of underground thermal storage in a solar-ground coupled heat pump system for residential buildings. Energy and Buildings, 40(7), 1278–1286. https://doi.org/10.1016/j.enbuild.2007.11.009. [CrossRef] [Google Scholar]
  92. Alonso-Estébanez, A., Pascual-Muñoz, P., Sampedro-García, J. L., & Castro-Fresno, D. (2017). 3D numerical modelling and experimental validation of an asphalt solar collector. Applied Thermal Engineering, 126, 678–688. https://doi.org/10.1016/j.applthermaleng.2017.07.127. [CrossRef] [Google Scholar]
  93. He, W., Hong, X., Luo, B., Chen, H., & Ji, J. (2016). CFD and comparative study on the dual-function solar collectors with and without tile-shaped covers in water heating mode. Renewable energy, 86, 1205–1214. https://doi.org/10.1016/j.renene.2015.09.053 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.