Open Access
Issue
MATEC Web Conf.
Volume 400, 2024
5th International Conference on Sustainable Practices and Innovations in Civil Engineering (SPICE 2024)
Article Number 02011
Number of page(s) 15
Section Geotechnical and Environmental Engineering
DOI https://doi.org/10.1051/matecconf/202440002011
Published online 03 July 2024
  1. Goswami B N, Venugopal V, Sengupta D, Madhusoodanan M S and Xavier P K 2006 Increasing trend of extreme rain events over India in a warming environment; Science 314 1442–1445, https://doi.org/10.1126/science.1132027. [CrossRef] [Google Scholar]
  2. Rajeevan M, Bhate J and Jaswal A K 2008 Analysis of variability and trends of extreme rainfall events over India using 104 years of gridded daily rainfall data; Geophys. Res. Lett. 35 L18707, https://doi.org/10.1029/2008GL035143. [Google Scholar]
  3. Le, TT., Pham, B.T., Ly, HB., Shirzadi, A., Le, L.M. (2020). Development of 48-hour Precipitation Forecasting Model using Nonlinear Autoregressive Neural Network. In: Ha-Minh, C., Dao, D., Benboudjema, F., Derrible, S., Huynh, D., Tang, A. (eds) CIGOS 2019, Innovation for Sustainable Infrastructure. Lecture Notes in Civil Engineering, vol 54. Springer, Singapore. https://doi.org/10.1007/978-981-15-0802-8_191 [Google Scholar]
  4. Balamurugan, M.S., Manojkumar, R. Study of short term rain forecasting using machine learning based approach. Wireless Netw 27, 5429–5434 (2021). https://doi.org/10.1007/s11276-019-02168-3 [Google Scholar]
  5. Azevedo, A.I.R.L.; Santos, M.F. KDD, SEMMA and CRISP-DM: A Parallel Overview. In Proceedings of the IADIS European Conference Data Mining, Amsterdam, The Netherlands, 24-26 July 2008; pp. 182–185. [Google Scholar]
  6. Valipour, M.; Banihabib, M.E.; Behbahani, S.M.R. Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir. J. Hydrol. 2012, 476, 433–441. [Google Scholar]
  7. Schneider, T., Lan, S., Stuart, A., & Teixeira, J. (2017). Earth system modeling 2.0: A blueprint for models that learn from observations and targeted high‐resolution simulations. Geophysical Research Letters, 44(24), 12–396. [CrossRef] [Google Scholar]
  8. O’Gorman, P. A., & Dwyer, J. G. (2018). Using machine learning to parameterize moist convection: Potential for modeling of climate, climate change, and extreme events. Journal of Advances in Modeling Earth Systems, 10(10), 2548–2563. [CrossRef] [Google Scholar]
  9. Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N., & Prabhat, F. (2019). Deep learning and process understanding for data-driven Earth system science. Nature, 566(7743), 195–204. [CrossRef] [PubMed] [Google Scholar]
  10. Lam, H. K., Ling, S. H., Leung, F. H. F., & Tam, P. K. S. (2001). Tuning of the structure and parameters of neural network using an improved genetic algorithm. In IECON’01. 27th annual conference of the IEEE industrial electronics society (Cat. No.37243), Denver, CO, USA (Vol. 1, pp. 25–30). [Google Scholar]
  11. Xue Y., Jiang J. & Hong L. 2020 A LSTM based prediction model for nonlinear dynamical systems with chaotic itinerancy. International Journal of Dynamics and Control 8, 1117–1128. [CrossRef] [Google Scholar]
  12. Yu, P.-S.; Yang, T.-C.; Chen, S.-Y.; Kuo, C.-M.; Tseng, H.-W. Comparison of random forests and support vector machine for real-time radar-derived rainfall forecasting. J. Hydrol. 2017, 552, 92–104. [CrossRef] [CrossRef] [Google Scholar]
  13. Mohammadi B, Ahmadi F, Mehdizadeh S, Guan Y, Pham QB, Linh NTT, et al. Developing novel robust models to improve the accuracy of daily streamflow modeling. Water Resour Manag 2020. [Google Scholar]
  14. Ahmadi, M., Sharifi, A., Dorosti, S., Ghoushchi, S. J., & Ghanbari, N. (2020). Investigation of effective climatology parameters on COVID-19 outbreak in Iran. Science of the total environment, 729, 138705. [CrossRef] [Google Scholar]
  15. Mohammadi B, Linh NTT, Pham QB, Ahmed AN, Vojteková J, Guan Y, et al. Adaptive neuro-fuzzy inference system coupled with shuffled frog leaping algorithm for predicting river streamflow time series. Hydrol Sci J 2020:1. [Google Scholar]
  16. Wanie M. Ridwan, Michelle Sapitang, Awatif Aziz, Khairul Faizal Kushiar, Ali Najah Ahmed, Ahmed El-Shafie, Rainfall forecasting model using machine learning methods: Case study Terengganu, Malaysia, Ain Shams Engineering Journal, 12, 2021, 1651–1663. https://doi.org/10.1016/j.asej.2020.09.011. [CrossRef] [Google Scholar]
  17. Yan Q, Ji F, Miao K, Wu Q, Xia Y and Li T 2020 Convolutional residual-attention: A deep learning approach for prediction of nowcasting; Adv. Meteorol., https://doi.org/10.1155/2020/6484812. [Google Scholar]
  18. Dechao Sun, Jiali Wu, Hong Huang, Renfang Wang, Feng Liang, Hong Xinhua, “Prediction of Short-Time Rainfall Based on Deep Learning”, Mathematical Problems in Engineering, vol. 2021, Article ID 6664413, 8 pages, 2021. https://doi.org/10.1155/2021/6664413 [Google Scholar]
  19. Subrahmanyam, K.V., Ramsenthil, C., Girach Imran, A. et al. Prediction of heavy rainfall days over a peninsular Indian station using the machine learning algorithms. J Earth Syst Sci 130, 240 (2021). https://doi.org/10.1007/s12040-021-01725-9 [CrossRef] [Google Scholar]
  20. C. Z. Basha, N. Bhavana, P. Bhavya and S. V, “Rainfall Prediction using Machine Learning & Deep Learning Techniques,” 2020 International Conference on Electronics and Sustainable Communication Systems (ICESC), 2020, pp. 92–97, doi: 10.1109/ICESC48915.2020.9155896. [Google Scholar]
  21. Hewage, P., Trovati, M., Pereira, E. et al. Deep learning-based effective fine-grained weather forecasting model. Pattern Anal Applic 24, 343–366 (2021). https://doi.org/10.1007/s10044-020-00898-1 [CrossRef] [Google Scholar]
  22. Gu, J.; Liu, S.; Zhou, Z.; Chalov, S.R.; Zhuang, Q. A Stacking Ensemble Learning Model for Monthly Rainfall Prediction in the Taihu Basin, China. Water 2022, 14, 492. https://doi.org/10.3390/w14030492 [Google Scholar]
  23. Bagirov, A.; Mahmood, A.; Barton, A. Prediction of monthly rainfall in Victoria, Australia: Clusterwise linear regression approach. Atmospheric Res. 2017, 188, 20–29. [CrossRef] [CrossRef] [Google Scholar]
  24. Mishra, N.; Soni, H.K.; Sharma, S.; Upadhyay, A.K. Development and Analysis of Artificial Neural Network Models for Rainfall Prediction by Using Time-Series Data. Int. J. Intell. Syst. Appl. 2018, 10, 16–23. [Google Scholar]
  25. Demeke Endalie, Getamesay Haile, Wondmagegn Taye; Deep learning model for daily rainfall prediction: case study of Jimma, Ethiopia. Water Supply 1 March 2022; 22 (3): 3448–3461. doi: https://doi.org/10.2166/ws.2021.391 [Google Scholar]
  26. Rahman, A.-u.; Abbas, S.; Gollapalli, M.; Ahmed, R.; Aftab, S.; Ahmad, M.; Khan, M.A.; Mosavi, A. Rainfall Prediction System Using Machine Learning Fusion for Smart Cities. Sensors 2022, 22, 3504. https://doi.org/10.3390/s22093504 [CrossRef] [Google Scholar]
  27. Yen, MH., Liu, DW., Hsin, YC. et al. Application of the deep learning for the prediction of rainfall in Southern Taiwan. Sci Rep 9, 12774 (2019). https://doi.org/10.1038/s41598-019-49242-6 [CrossRef] [Google Scholar]
  28. Shamshirband, S., Hashemi, S., Salimi, H., Samadianfard, S., Asadi, E., Shadkani, S., Kargar, K., Mosavi, A., Nabipour, N., & Chau, K.-W. (2020). Predicting standardized streamflow index for hydrological drought using machine learning models. Engineering Applications of Computational Fluid Mechanics, 14(1), 339–350. https://doi.org/10.1080/19942060.2020.1715844 [CrossRef] [Google Scholar]
  29. Ozen, H., & Bal, C. (2020). A study on missing data problem in random Forest. Osmangazi Journal of Medicine, 42(1), 103–109. https://doi.org/10.20515/otd.496524 [Google Scholar]
  30. T., Ass, Somula, R, K., G, Saxena, A, A., PR. Estimating rainfall using machine learning strategies based on weather radar data. Int J Commun Syst. 2020; 33:e3999. https://doi.org/10.1002/dac.3999 [CrossRef] [Google Scholar]
  31. Chengcheng Chen, Qian Zhang, Mahsa H. Kashani, Changhyun Jun, Sayed M. Bateni, Shahab S. Band, Sonam Sandeep Dash & Kwok-Wing Chau (2022) Forecast of rainfall distribution based on fixed sliding window long short-term memory, Engineering Applications of Computational Fluid Mechanics, 16:1, 248–261, DOI: 10.1080/19942060.2021.2009374 [CrossRef] [Google Scholar]
  32. D. Attali and A. Montanvert, “Computing and simplifying 2D and 3D continuous skeletons,” Computer Vision and Image Understanding, vol. 67, no. 3, pp. 261–273, 1997. [CrossRef] [Google Scholar]
  33. Ari Yair Barrera-Animas, Lukumon O. Oyedele, Muhammad Bilal, Taofeek Dolapo Akinosho, Juan Manuel Davila Delgado, Lukman Adewale Akanbi, Rainfall prediction: A comparative analysis of modern machine learning algorithms for time-series forecasting, Machine Learning with Applications, 7, 2022, https://doi.org/10.1016/j.mlwa.2021.100204. [Google Scholar]
  34. Natarajan, S., Radhakrishnan, N. Simulation of rainfall–runoff process for an ungauged catchment using an event-based hydrologic model: A case study of koraiyar basin in Tiruchirappalli city, India. J Earth Syst Sci 130, 30 (2021). https://doi.org/10.1007/s12040-020-01532-8. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.