Open Access
MATEC Web Conf.
Volume 400, 2024
5th International Conference on Sustainable Practices and Innovations in Civil Engineering (SPICE 2024)
Article Number 02007
Number of page(s) 28
Section Geotechnical and Environmental Engineering
Published online 03 July 2024
  1. Ahmed, R., Sreeram, V., Mishra, Y., Arif, M.D., 2020b. A review and evaluation of the state-of-the-art in PV solar power forecasting: techniques and optimization. Renew. Sust. Energ. Rev. 124, 109792. [CrossRef] [Google Scholar]
  2. Rao, A.P., Sarman, K.G., Kumar, G.V.P., Yerra, S.D., 2022. Water quality monitoring using remote control boat. In: International Conference on Cognitive Computing and Cyber Physical Systems. Springer Nature Switzerland, Cham, pp. 201–212. [Google Scholar]
  3. Martinell, D.P., Cashion, T., Parker, R., Sumaila, U.R., 2020. Closing the high seas to fisheries: possible impacts on aquaculture. Mar. Policy 115, 103854. [CrossRef] [Google Scholar]
  4. Naylor, R., Fang, S., Fanzo, J., 2023. A global view of aquaculture policy. Food Policy 116, 102422. [CrossRef] [Google Scholar]
  5. Zhou, X., Wang, J., Huang, L., Li, D., Duan, Q., 2022. Modelling and controlling dissolved oxygen in recirculating aquaculture systems based on mechanism analysis and an adaptive PID controller. Comput. Electron. Agric. 192, 106583. [CrossRef] [Google Scholar]
  6. Zhou, C., Zhang, J., 2023. Simultaneous measurement of chemical oxygen demand and turbidity in water based on broad optical spectra using backpropagation neural network. Chemom. Intell. Lab. Syst. 237, 104830. [CrossRef] [Google Scholar]
  7. Chai, W.S., Tan, W.G., Munawaroh, H.S.H., Gupta, V.K., Ho, S.H., Show, P.L., 2021. Multifaceted roles of microalgae in the application of wastewater biotreatment: a review. Environ. Pollut. 269, 116236 [CrossRef] [Google Scholar]
  8. Yang, X., Xu, M., Zou, R., Angelidaki, I., Zhang, Y., 2021. Microbial protein production from CO2, H2, and recycled nitrogen: focusing on ammonia toxicity and nitrogen sources. J. Clean. Prod. 291, 125921. [CrossRef] [Google Scholar]
  9. Moloantoa, K.M., Khetsha, Z.P., Van Heerden, E., Castillo, J.C., Cason, E.D., 2022. Nitrate water contamination from industrial activities and complete denitrification as a remediation option. Water 14 (5), 799. [Google Scholar]
  10. Nabi, M., Liang, H., Cheng, L., Yang, W., Gao, D., 2022. A comprehensive review on the use of conductive materials to improve anaerobic digestion: focusing on landfill leachate treatment. J. Environ. Manag. 309, 114540. [CrossRef] [Google Scholar]
  11. Iber, B.T., Kasan, N.A., 2021. Recent advances in shrimp aquaculture wastewater management. Heliyon 7 (11), e08283. [CrossRef] [PubMed] [Google Scholar]
  12. Liu, Y.Z., Chen, Z., 2023. Prediction of biochemical oxygen demand with genetic algorithm-based support vector regression. Water Qual. Res. J. 58 (2), 87–98 [Google Scholar]
  13. Cao, X., Liu, Y., Wang, J., Liu, C., Duan, Q., 2020. Prediction of dissolved oxygen in pond culture water based on K-means clustering and gated recurrent unit neural network. Aquac. Eng. 91, 102122. [CrossRef] [Google Scholar]
  14. Owolabi, T.O., Saleh, T.A., Olusayo, O., Souiyah, M., Oyeneyin, O.E., 2021. Modeling the specific surface area of doped spinel ferrite nanomaterials using hybrid intelligent computational method. J. Nanomater. 2021, 1–13. [CrossRef] [Google Scholar]
  15. Melesse, A.M., Khosravi, K., Tiefenbacher, J.P., Heddam, S., Kim, S., Mosavi, A., Pham, B. T., 2020. River water salinity prediction using hybrid machine learning models. Water 12 (10), 2951. [CrossRef] [Google Scholar]
  16. Nafsin, N., Li, J., 2022. Prediction of 5-day biochemical oxygen demand in the Buriganga River of Bangladesh using novel hybrid machine learning algorithms. Water Environ. Res. 94 (5), e10718. [Google Scholar]
  17. Jiange, J., Liqin, Z., Senjun, H., Qianqian, M., 2023. Water quality prediction based on IGRA-ISSA-LSTM model. Water Air Soil Pollut. 234 (3), 172. [Google Scholar]
  18. Nagaraju, T.V., Mantena, S., Azab, M., Alisha, S.S., El Hachem, C., Adamu, M., Murthy, P. S.R., 2023b. Prediction of high strength ternary blended concrete containing different silica proportions using machine learning approaches. Results Eng. 17, 100973. [CrossRef] [Google Scholar]
  19. Kolli, M.K., Opp, C., Groll, M., 2021. Estimation of soil erosion and sediment yield concentration across the Kolleru Lake catchment using GIS. Environ. Earth Sci. 80 (4) [CrossRef] [Google Scholar]
  20. Jagaba, A.H., Kutty, S.R.M., Hayder, G., Baloo, L., Abubakar, S., Ghaleb, A.A.S., Almahbashi, N.M.Y., 2020. Water quality hazard assessment for hand dug wells in Rafin Zurfi, Bauchi State, Nigeria. Ain Shams Eng. J. 11 (4), 983–999 [CrossRef] [Google Scholar]
  21. Qambar, A.S., Al Khalidy, M.M., 2022. Prediction of municipal wastewater biochemical oxygen demand using machine learning techniques: a sustainable approach. Process. Saf. Environ. Prot. 168, 833–845. [CrossRef] [Google Scholar]
  22. Khaledian, Y., Miller, B.A., 2020. Selecting appropriate machine learning methods for digital soil mapping. Appl. Math. Model. 81, 401–418. [CrossRef] [Google Scholar]
  23. Alade, I.O., Rahman, M.A.A., Hassan, A., Saleh, T.A., 2020. Modeling the viscosity of nanofluids using artificial neural network and Bayesian support vector regression. J. Appl. Phys. 128 (8). [CrossRef] [Google Scholar]
  24. Wahla, S.S., Kazmi, J.H., Tariq, A., 2023. Mapping and monitoring of spatio-temporal land use and land cover changes and relationship with normalized satellite indices and driving factors. Geol. Ecol. Landscapes 00, 1–17. [Google Scholar]
  25. Gunturi, S.K., Sarkar, D., 2021. Ensemble machine learning models for the detection of energy theft. Electr. Power Syst. Res. 192, 106904. [CrossRef] [Google Scholar]
  26. Shahraki, A., Abbasi, M., Haugen, Ø., 2020. Boosting algorithms for network intrusion detection: a comparative evaluation of Real AdaBoost, Gentle AdaBoost and Modest AdaBoost. Eng. Appl. Artif. Intell. 94, 103770 [CrossRef] [Google Scholar]
  27. Devi, V.A., Naved, M., 2021. Dive in deep learning: computer vision, natural language processing, and signal processing. In: Machine Learning in Signal Processing. Chapman and Hall/CRC, pp. 97–126. [CrossRef] [Google Scholar]
  28. Dong, J., Chen, Y., Yao, B., Zhang, X., Zeng, N., 2022. A neural network boosting regression model based on XGBoost. Appl. Soft Comput. 125, 109067. [CrossRef] [Google Scholar]
  29. Alzubaidi, L., Zhang, J., Humaidi, A.J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., Farhan, L., 2021. Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. J. Big Data 8, 1–74. [CrossRef] [Google Scholar]
  30. Feng, D.C., Wang, W.J., Mangalathu, S., Hu, G., Wu, T., 2021. Implementing ensemble learning methods to predict the shear strength of RC deep beams with/without web reinforcements. Eng. Struct. 235, 111979. [CrossRef] [Google Scholar]
  31. Behera, J., Pasayat, A.K., Behera, H., Kumar, P., 2023. Prediction based mean-value-atrisk portfolio optimization using machine learning regression algorithms for multinational stock markets. Eng. Appl. Artif. Intell. 120, 105843. [CrossRef] [Google Scholar]
  32. Nyirandayisabye, R., Li, H., Dong, Q., Hakuzweyezu, T., Nkinahamira, F., 2022. Automatic pavement damage predictions using various machine learning algorithms: evaluation and comparison. Results Eng. 16, 100657. [CrossRef] [Google Scholar]
  33. Massaoudi, M., Refaat, S.S., Chihi, I., Trabelsi, M., Oueslati, F.S., Abu-Rub, H., 2021. A novel stacked generalization ensemble-based hybrid LGBM-XGB-MLP model for Short-Term Load Forecasting. Energy 214, 118874. [CrossRef] [Google Scholar]
  34. Alabdullah, A.A., Iqbal, M., Zahid, M., Khan, K., Amin, M.N., Jalal, F.E., 2022. Prediction of rapid chloride penetration resistance of metakaolin based high strength concrete using light GBM and XGBoost models by incorporating SHAP analysis. Constr. Build. Mater. 345, 128296. [CrossRef] [Google Scholar]
  35. Nasir, N.M., Jusoh, A., Manan, H., Kasan, N.A., Kamaruzzan, A.S., Ghani, W.A.W.A.K., Lananan, F., 2023. Utilization of microalgae, Chlorella sp. UMT LF2 for bioremediation of Litopenaeus vannamei culture system and harvesting using bioflocculant, Aspergillus niger. Biocatal. Agric. Biotechnol. 47, 102596 [CrossRef] [Google Scholar]
  36. Tan, L.V., Tran, T., Loc, H.H., 2020. Soil and water quality indicators of diversified farming systems in a saline region of the Mekong Delta, Vietnam. Agriculture 10 (2), 38. [CrossRef] [Google Scholar]
  37. Ji, S., Wang, X., Lyu, T., Liu, X., Wang, Y., Heinen, E., Sun, Z., 2022. Understanding cycling distance according to the prediction of the XGBoost and the interpretation of SHAP: a non-linear and interaction effect analysis. J. Transp. Geogr. 103, 103414. [CrossRef] [Google Scholar]
  38. Khanjani, M.H., Alizadeh, M., Sharifinia, M., 2020. Rearing of the Pacific white shrimp, Litopenaeus vannamei in a biofloc system: the effects of different food sources and salinity levels. Aquac. Nutr. 26 (2), 328–337. [CrossRef] [Google Scholar]
  39. Li, T., Lu, J., Wu, J., Zhang, Z., Chen, L., 2022. Predicting aquaculture water quality using machine learning approaches. Water 14 (18), 2836. [Google Scholar]
  40. He, M.-Y., Dong, J.-B., Jin, Z., Liu, C.-Y., Xiao, J., Zhang, F., Sun, H., Zhao, Z.-Q., Gou, L.F., Liu, W.-G., Luo, C.-G., Song, Y.-G., Ma, L., Deng, L., 2021. Pedogenic processes in loess-paleosol sediments: Clues from Li isotopes of leachate in Luochuan loess. Geochim. Cosmochim. Acta 299, 151–162. [CrossRef] [Google Scholar]
  41. Singh, R. B., & Patra, K. C. (2024). Integrated PCA–RNN approach for surface water quality assessment in the Mahanadi river system. International Journal of Environmental Science and Technology, 1–16. [Google Scholar]
  42. Rajput, P., Sinha, M. K., & Nigam, G. K. (2022). Strategic Evaluation of Water Quality Monitoring Network Using GIS-AHP Model in a Large River System. In Water Resources Management and Sustainability (pp. 281–303). Singapore: Springer Nature Singapore. [CrossRef] [Google Scholar]
  43. Pati, S. S., Nayak, S., Mishra, S., Panda, B. S., Mahala, S. S., Mohanty, S. K., ... & Murugesan, K. (2023). A comprehensive study of the estuary sea environment in the Bay of Bengal, near the Mahanadi River confluence. Discover Water, 3(1), 20. [CrossRef] [Google Scholar]
  44. Pattanayak, A. A., Swain, S., Behera, R. R., Sharma, S. D., Panda, C. R., & Mohanty, P. K. (2024). Variability in water quality of two meso-tidal estuaries of Odisha, East Coast of India. Journal of Marine Systems, 241, 103919. [CrossRef] [Google Scholar]
  45. Hussain, S.A., Han, F.Q., Ma, Z., Hussain, A., Mughal, M.S., Han, J., Alhassan, A., Widory, D., 2021. Origin and evolution of Eocene rock salts in Pakistan and implications for paleoclimate studies: insights from chemistry and Cl stable isotopes. Front. Earth Sci. 9, 1–13. [CrossRef] [Google Scholar]
  46. WHO, 2011. Guidelines for drinking-water quality. WHO Chron. 38 (4), 104–108 from. (Accessed 1 June 2023). [Google Scholar]
  47. Ali, S., Khorrami, B., Jehanzaib, M., Tariq, A., Ajmal, M., Arshad, A., Shafeeque, M., Dilawar, A., Basit, I., Zhang, L., Sadri, S., Niaz, M.A., Jamil, A., Khan, S.N., 2023. Spatial downscaling of GRACE data based on XGBoost model for improved understanding of hydrological droughts in the indus basin irrigation system (IBIS). Rem. Sens. 15, 873. [CrossRef] [Google Scholar]
  48. Yin, L., Wang, L., Li, J., Lu, S., Tian, J., Yin, Z., Liu, S., Zheng, W., 2023. YOLOV4_CSPBi: enhanced land target detection model. Land 12, 1813. [CrossRef] [Google Scholar]
  49. Omonona, O. V., & Okogbue, C. O. (2024). Cumulative ecological risk of groups of trace metals in soils impacted by agricultural activity. International Journal of Environmental Science and Technology, 21(1), 687–702. [CrossRef] [Google Scholar]
  50. Khaled, E. B., Obeidat, M., Al-Ajlouni, A., Awawdeh, M., & Dalo, M. A. (2024). Demarcation of Groundwater Quality Using Drinking Water Quality Index (DWQI), Nitrate Pollution Index (NPI), and Irrigation Indices: A Case Study from Jerash Region. [Google Scholar]
  51. Esmaeili, M., Abbasi-Moghadam, D., Sharifi, A., Tariq, A., Li, Q., 2024. ResMorCNN model: hyperspectral images classification using residual-injection morphological features and 3DCNN layers. IEEE J. Sel. Top. Appl. Earth Obs. Rem. Sens. 17, 219–243. [CrossRef] [Google Scholar]
  52. Lu, S., Zhu, G., Meng, G., Lin, X., Liu, Y., Qiu, D., Xu, Y., Wang, Q., Chen, L., Li, R., Jiao, Y., 2024. Influence of atmospheric circulation on the stable isotope of precipitation in the monsoon margin region. Atmos. Res. 298, 107131. [CrossRef] [Google Scholar]
  53. Monira, U., Sattar, G. S., & Mostafa, M. G. (2024). Assessment of surface water quality using the Water Quality Index (WQI) and multivariate statistical analysis (MSA), around tannery industry effluent discharge areas. H2Open Journal, 7(2), 130–148. [CrossRef] [Google Scholar]
  54. Ali, S., Verma, S., Agarwal, M. B., Islam, R., Mehrotra, M., Deolia, R. K., ... & Fattahi, M. (2024). Groundwater quality assessment using water quality index and principal component analysis in the Achnera block, Agra district, Uttar Pradesh, Northern India. Scientific Reports, 14(1), 5381. [CrossRef] [Google Scholar]
  55. Bokhari, R., Shu, H., Tariq, A., Al-Ansari, N., Guluzade, R., Chen, T., Jamil, A., Aslam, M., 2023. Land subsidence analysis using synthetic aperture radar data. Heliyon 9, e14690. [CrossRef] [Google Scholar]
  56. Cruz, F., & Silva, T. F. D. G. (2024). Water quality emergency monitoring networks: a method for identifying non-critical variables based on Shannon’s entropy. Journal of Hydroinformatics, jh2024256. [Google Scholar]
  57. Felegari, S., Sharifi, A., Khosravi, M., Sabanov, S., Tariq, A., Karuppannan, S., 2023. Using Sentinel-2 data to estimate the concentration of heavy metals caused by industrial activities in Ust-Kamenogorsk, Northeastern Kazakhstan. Heliyon 9, e21908. [CrossRef] [Google Scholar]
  58. Cheng, Y., Lan, S., Fan, X., Tjahjadi, T., Jin, S., Cao, L., 2023. A dual-branch weakly supervised learning-based network for accurate mapping of woody vegetation from remote sensing images. Int. J. Appl. Earth Obs. Geoinf. 124, 103499. [Google Scholar]
  59. Zhao, Z., Islam, F., Waseem, L.A., Tariq, A., Nawaz, M., Islam, I.U., Bibi, T., Rehman, N. U., Ahmad, W., Aslam, R.W., Raza, D., Hatamleh, W.A., 2024. Comparison of three machine learning algorithms using google earth engine for land use land cover classification. Rangel. Ecol. Manag. 92, 129–137. [CrossRef] [Google Scholar]
  60. Han, X., Tang, F., & Liu, A. L. (2024). Drinking water quality evaluation in supply systems in Wuhan, China: application of entropy weight water quality index and multivariate statistical analysis. Environmental Science and Pollution Research, 31(1), 280–292. [Google Scholar]
  61. Zheng, X., Sarwar, A., Islam, F., Majid, A., Tariq, A., Ali, M., Gulzar, S., Khan, M.I., Sardar Ali, M.A., Israr, M., Jamil, A., Aslam, M., Soufan, W., 2023. Rainwater harvesting for agriculture development using multi-influence factor and fuzzy overlay techniques. Environ. Res. 238, 117189 [CrossRef] [Google Scholar]
  62. Gautam, V. K., Kothari, M., Al-Ramadan, B., Singh, P. K., Upadhyay, H., Pande, C. B., ... & Yaseen, Z. M. (2024). Groundwater quality characterization using an integrated water quality index and multivariate statistical techniques. Plos one, 19(2), e0294533. [CrossRef] [Google Scholar]
  63. Shah, S.H.I.A., Yan, J., Ullah, I., Aslam, B., Tariq, A., Zhang, L., Mumtaz, F., 2021. Classification of aquifer vulnerability by using the DRASTIC index and geo-electrical techniques. Water 13, 2144. [CrossRef] [Google Scholar]
  64. Jayaraman, P., Nagarajan, K. K., Partheeban, P., & Krishnamurthy, V. (2024). Critical review on water quality analysis using IoT and machine learning models. International Journal of Information Management Data Insights, 4(1), 100210. [CrossRef] [Google Scholar]
  65. Wu, X., Guo, S., Qian, S., Wang, Z., Lai, C., Li, J., Liu, P., 2022. Long-range precipitation forecast based on multipole and preceding fluctuations of sea surface temperature. Int. J. Climatol. 42, 8024–8039. [CrossRef] [Google Scholar]
  66. Islam, F., Tariq, A., Guluzade, R., Zhao, N., Shah, S.U., Ullah, M., Hussain, M.L., Ahmad, M.N., Alasmari, A., Alzuaibr, F.M., Askary, A. El, Aslam, M., 2023. Comparative analysis of GIS and RS based models for delineation of groundwater potential zone mapping. Geomatics, Nat. Hazards Risk 14, 27. [Google Scholar]
  67. Prajapat, K., Sanwal, S. K., & Sharma, P. C. (2024). Screening of quinoa (Chenopodium quinoa Willd.) germplasms under high-SAR saline water on the basis of growth, yield, and multivariate analysis. Journal of Biosciences, 49(1), 23. [CrossRef] [Google Scholar]
  68. Khan, D., Raziq, A., Young, H.W.V., Sardar, T., Liou, Y.A., 2022. Identifying potential sites for rainwater harvesting structures in Ghazi Tehsil, Khyber Pakhtunkhwa, Pakistan, using geospatial approach. Remote Sens. 14, 5008. [CrossRef] [Google Scholar]
  69. Tariq, A., Qin, S., 2023. Spatio-temporal variation in surface water in Punjab, Pakistan from 1985 to 2020 using machine-learning methods with time-series remote sensing data and driving factors. Agric. Water Manag. 280, 108228 [CrossRef] [Google Scholar]
  70. Xie, Y., Nie, X., Wang, C., Xu, X., & Zhang, F. (2024). A metabolomics approach for monitoring thermal processing temperature of bovine milk using ultra-performance liquid chromatography tandem Q-Exactive mass spectrometry and multivariate data analysis. Journal of Future Foods, 4(1), 83–90. [CrossRef] [Google Scholar]
  71. Aziz, S.F., Abdulrahman, K.Z., Ali, S.S., Karakouzian, M., 2023. Water harvesting in the Garmian Region (Kurdistan, Iraq) using GIS and remote sensing. Water (Switzerland) 15. [Google Scholar]
  72. Laghrib, F., Bahaj, T., El Kasmi, S., Hilali, M., Kacimi, I., Nouayti, N., ... & Hammani, O. (2024). Hydrogeochemical study of groundwater in arid and semi-arid regions of the Infracenomanian aquifers (Cretaceous Errachidia basin, Southeastern Morocco). Using hydrochemical modeling and multivariate statistical analysis. Journal of African Earth Sciences, 209, 105132. [Google Scholar]
  73. Das, A. (2022). Multivariate statistical approach for the assessment of water quality of Mahanadi basin, Odisha. Materials Today: Proceedings, 65, A1–A11. [CrossRef] [Google Scholar]
  74. Das, A. (2024). Assessment of Surface Water Quality Using Entropy-WQI, Fuzzy-TOPSIS Analysis, Irrigation Indices and Spatial Interpolation Approaches in Mahanadi River Basin, Odisha, India. Journal of Environment Nanotechnology., Volume 13, No (1), pp. 182–212. [CrossRef] [Google Scholar]
  75. APHA (2005) Standard methods for the examination of water and wastewater, 21st edn. New York [Google Scholar]
  76. Das, A. (2024). Water Quality Assessment Using Water Quality Index (WQI) Under GIS Framework in Brahmani Basin, Odisha. In International Conference Innovation in Smart and Sustainable Infrastructure (pp. 131–150). Springer, Singapore. [Google Scholar]
  77. Das, A. (2023). Characterization of Surface Water Quality Using Water Evaluation Indices, EDAS and Geo-Statistics in Brahmani River Basin (BRB), Odisha, India. In Hydraulic and Civil Engineering Technology VIII (pp. 826–834). IOS Press. [Google Scholar]
  78. Das, A. (2023). Anthropogenic Effects on Surface Water Quality Assessment in Baitarani River Basin, Odisha Using GIS and MCDM Techniques. Engineering Research Transcripts, 5, 37–64. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.