Open Access
MATEC Web Conf.
Volume 400, 2024
5th International Conference on Sustainable Practices and Innovations in Civil Engineering (SPICE 2024)
Article Number 02006
Number of page(s) 18
Section Geotechnical and Environmental Engineering
Published online 03 July 2024
  1. Uddin, M. G., Diganta, M. T. M., Sajib, A. M., Hasan, M. A., Moniruzzaman, M., Rahman, A., ... & Moniruzzaman, M. (2023). Assessment of hydrogeochemistry in groundwater using water quality index model and indices approaches. Heliyon, 9(9). [Google Scholar]
  2. Nawaz, R., Nasim, I., Irfan, A., Islam, A., Naeem, A., Ghani, N., ... & Ullah, R. (2023). Water Quality Index and Human Health Risk Assessment of Drinking Water in Selected Urban Areas of a Mega City. Toxics, 11(7), 577. [CrossRef] [Google Scholar]
  3. Ding, F., Zhang, W., Cao, S., Hao, S., Chen, L., Xie, X., ... & Jiang, M. (2023). Optimization of water quality index models using machine learning approaches. Water Research, 243, 120337. [Google Scholar]
  4. Gani, A., Pathak, S., Hussain, A., Ahmed, S., Singh, R., Khevariya, A., ... & Bahadur, A. (2023). Water quality index assessment of river Ganga at Haridwar stretch using multivariate statistical technique. Molecular Biotechnology, 1–24. [Google Scholar]
  5. Gupta, D., & Mishra, V. K. (2023). Development of entropy-river water quality index for predicting water quality classification through machine learning approach. Stochastic Environmental Research and Risk Assessment, 37(11), 4249–4271. [CrossRef] [Google Scholar]
  6. Anang, E., Tei, M., Antwi, A. B., Aduboffour, V. K., & Anang, B. (2023). Assessment of groundwater and surface water quality in a typical mining community: application of water quality indices and hierarchical cluster analyses. Journal of Water and Health, 21(7), 925–938. [CrossRef] [Google Scholar]
  7. Saqib, N., Rai, P. K., Kanga, S., Kumar, D., Đurin, B., & Singh, S. K. (2023). Assessment of Ground Water Quality of Lucknow City under GIS Framework Using Water Quality Index (WQI). Water, 15(17), 3048. [Google Scholar]
  8. Majumder, P. (2023). An integrated trapezoidal fuzzy FUCOM‐TOPSIS method to determine alternatives’ ranking and utilization in the water treatment plant. Environmental Progress & Sustainable Energy, e14096. [CrossRef] [Google Scholar]
  9. Sadeghi, H., Darzi, A. G., Voosoghi, B., Garakani, A. A., Ghorbani, Z., & Mojtahedi, S. F. F. (2023). Assessing the vulnerability of Iran to subsidence hazard using a hierarchical FUCOM-GIS framework. Remote Sensing Applications: Society and Environment, 31, 100989. [CrossRef] [Google Scholar]
  10. Khan, A., Khan, M. S., Egozcue, J. J., Shafique, M. A., Nadeem, S., & Saddiq, G. (2022). Irrigation suitability, health risk assessment and source apportionment of heavy metals in surface water used for irrigation near marble industry in Malakand, Pakistan. Plos one, 17(12), e0279083. [CrossRef] [Google Scholar]
  11. Alam, Z., & Khan, Z. (2023). Analyzing the Flood Intensifying Factors and Mitigation Strategies to Enhance the Flood Resilience in Pakistan: A Novel Hybrid Fuzzy-FUCOM-Fuzzy-WASPAS Approach. [Google Scholar]
  12. Nemati, A., Zolfani, S. H., & Khazaelpour, P. (2023). A novel gray FUCOM method and its application for better video games experiences. Expert Systems with Applications, 234, 121041. [CrossRef] [Google Scholar]
  13. Ahmed, H. A. (2023). Monitoring and assessing the quality of water in lake Edku using the Remote sensing technology and the Geographic information system (GIS). Aquatic Science and Fish Resources (ASFR), 4, 29–39. [CrossRef] [Google Scholar]
  14. Zafar, M. M., Sulaiman, M. A., Prabhakar, R., & Kumari, A. (2022). Evaluation of the suitability of groundwater for irrigational purposes using irrigation water quality indices and geographical information systems (GIS) at Patna (Bihar), India. International Journal of Energy and Water Resources, 1–14. [Google Scholar]
  15. Mahammad, S., Islam, A., & Shit, P. K. (2023). Geospatial assessment of groundwater quality using entropy-based irrigation water quality index and heavy metal pollution indices. Environmental Science and Pollution Research, 30(55), 116498–116521. [Google Scholar]
  16. Islam, M. S. (2023). Irrigation Water Quality. In Hydrogeochemical Evaluation and Groundwater Quality (pp. 223–280). Cham: Springer Nature Switzerland. [CrossRef] [Google Scholar]
  17. Badr, E. S. A., Tawfik, R. T., & Alomran, M. S. (2023). An Assessment of Irrigation Water Quality with Respect to the Reuse of Treated Wastewater in Al-Ahsa Oasis, Saudi Arabia. Water, 15(13), 2488. [Google Scholar]
  18. Şimşek, A., & Mutlu, E. (2023). Assessment of the water quality of Bartın Kışla (Kozcağız) Dam by using geographical information system (GIS) and water quality indices (WQI). Environmental Science and Pollution Research, 30(20), 58796–58812. [CrossRef] [Google Scholar]
  19. Azhari, H. E., Cherif, E. K., Sarti, O., Azzirgue, E. M., Dakak, H., Yachou, H., ... & Salmoun, F. (2022). Assessment of Surface Water Quality Using the Water Quality Index (IWQ), Multivariate Statistical Analysis (MSA) and Geographic Information System (GIS) in Oued Laou Mediterranean Watershed, Morocco. Water, 15(1), 130. [Google Scholar]
  20. Nguyen, M. H., Tran, T. A., Van, H. T., Hoang, T. H. N., Phan, P. C. M., Nguyen, C. L., ... & Pham, T. H. (2023). Surface water quality assessment in the Bach Dang river basin, Vietnam: using water quality index and geographical information system methods. Environmental Research Communications, 5(7), 075015. [CrossRef] [Google Scholar]
  21. Dehghan Rahimabadi, P., Behnia, M., Nasabpour Molaei, S., Khosravi, H., & Azarnivand, H. (2024). Assessment of groundwater resources potential using Improved Water Quality Index (ImpWQI) and entropy-weighted TOPSIS model. Sustainable Water Resources Management, 10(1), 1–13. [CrossRef] [Google Scholar]
  22. Wang, W., Fang, X., Wei, X., & Ye, J. (2024). Optimized stratification approach enhances the weightof-evidence method: Transparently uncovering wildfire probability and drivers-wildfire relationships in the southwest mountains of China. Ecological Indicators, 158, 111500. [CrossRef] [Google Scholar]
  23. Ghorbani, M. K., Talebbeydokhti, N., Hamidifar, H., Samadi, M., Nones, M., Rezaeitavabe, F., & Heidarifar, S. (2023). Improving the Quality of Education in Water Resources Engineering: A Hybrid Fuzzy-AHP-TOPSIS Method. Geoscience Communication Discussions, 2023, 1–16. [Google Scholar]
  24. Taher, M. K., Momoli, F., Go, J., Hagiwara, S., Ramoju, S., Hu, X., ... & Krewski, D. (2024). Systematic review of epidemiological and toxicological evidence on health effects of fluoride in drinking water. Critical Reviews in Toxicology, 1–33. [Google Scholar]
  25. Sajib, A. M., Diganta, M. T. M., Moniruzzaman, M., Rahman, A., Dabrowski, T., Uddin, M. G., & Olbert, A. I. (2024). Assessing water quality of an ecologically critical urban canal incorporating machine learning approaches. Ecological Informatics, 102514. [CrossRef] [Google Scholar]
  26. Kurwadkar, S., Sethi, S. S., Mishra, P., & Ambade, B. (2022). Unregulated discharge of wastewater in the Mahanadi River Basin: risk evaluation due to occurrence of polycyclic aromatic hydrocarbon in surface water and sediments. Marine Pollution Bulletin, 179, 113686. [CrossRef] [Google Scholar]
  27. Sajina, A. M., Sudheesan, D., Samanta, S., Paul, S. K., Bhowmick, S., Nag, S. K., ... & Das, B. K. (2022). Development and validation of a fish-based index of biotic integrity for assessing the ecological health of Indian Rivers Mahanadi and Kathajodi-Devi. Aquatic Ecosystem Health & Management, 25(2), 2535. [CrossRef] [Google Scholar]
  28. APHA (2005) American Public Health Association, Standard Methods for the Examination of Water and Wastewater, Method 1020 [Google Scholar]
  29. Mejía, L., & Barrios, M. (2023). Identifying watershed predictors of surface water quality through iterative input selection. International Journal of Environmental Science and Technology, 20(7), 7201–7216. [CrossRef] [Google Scholar]
  30. Kushwaha, N. L., Rajput, J., Suna, T., Sena, D. R., Singh, D. K., Mishra, A. K., ... & Mani, I. (2023). Metaheuristic approaches for prediction of water quality indices with relief algorithm-based feature selection. Ecological Informatics, 75, 102122. [CrossRef] [Google Scholar]
  31. Gao, Y., Qian, H., Ren, W., Wang, H., Liu, F., & Yang, F. (2020). Hydrogeochemical characterization and quality assessment of groundwater based on integrated-weight water quality index in a concentrated urban area. Journal of cleaner production, 260, 121006. [CrossRef] [Google Scholar]
  32. Talal, M., Alamoodi, A. H., Albahri, O. S., Albahri, A. S., & Pamucar, D. (2023). Evaluation of remote sensing techniques-based water quality monitoring for sustainable hydrological applications: an integrated FWZIC-VIKOR modelling approach. Environment, Development and Sustainability, 1–45. [Google Scholar]
  33. Wang, P., & Deng, H. (2023). Research on regional water environmental carrying capacity based on GIS and TOPSIS comprehensive evaluation model. Environmental Science and Pollution Research, 30(20), 57728–57746. [CrossRef] [Google Scholar]
  34. Piccardo, M., Vellani, V., Anselmi, S., Grazioli, E., Renzi, M., Terlizzi, A., ... & Bevilacqua, S. (2024). The application of the Weight-Of-Evidence approach for an integrated ecological risk assessment of marine protected sites. Ecological Indicators, 159, 111676. [CrossRef] [Google Scholar]
  35. Nabizadeh, R., Yousefzadeh, S., Yaghmaeian, K., Alimohammadi, M., & Mokhtari, Z. (2022). Bottled water quality ranking via the multiple-criteria decision-making process: a case study of two-stage fuzzy AHP and TOPSIS. Environmental Science and Pollution Research, 1–12. [Google Scholar]
  36. Singh, N., & Singh, K. R. (2022). Application of TOPSIS–A Multi Criteria Decision Making Approach in Surface Water Quality Assessment. In Environmental Degradation: Monitoring, Assessment and Treatment Technologies (pp. 225–232). Cham: Springer International Publishing. [CrossRef] [Google Scholar]
  37. WHO (2017) Guidelines for Drinking-Water Quality. World Health Organization [Google Scholar]
  38. Ravindra, B., Subba Rao, N., & Dhanamjaya Rao, E. N. (2023). Groundwater quality monitoring for assessment of pollution levels and potability using WPI and WQI methods from a part of Guntur district, Andhra Pradesh, India. Environment, Development and Sustainability, 25(12), 14785–14815. [CrossRef] [Google Scholar]
  39. Pati, S. S., Nayak, S., Mishra, S., Panda, B. S., Mahala, S. S., Mohanty, S. K., ... & Murugesan, K. (2023). A comprehensive study of the estuary sea environment in the Bay of Bengal, near the Mahanadi River confluence. Discover Water, 3(1), 20. [CrossRef] [Google Scholar]
  40. Pandey, S., Kumari, N., & Al Nawajish, S. (2023). Land use land cover (LULC) and surface water quality assessment in and around selected dams of Jharkhand using water quality index (WQI) and geographic information system (GIS). Journal of the Geological Society of India, 99(2), 205–218. [CrossRef] [Google Scholar]
  41. Liu, J., Peng, Y., Li, C., Gao, Z., & Chen, S. (2021). Characterization of the hydrochemistry of water resources of the Weibei Plain, Northern China, as well as an assessment of the risk of high groundwater nitrate levels to human health. Environmental Pollution, 268, 115947. [CrossRef] [Google Scholar]
  42. Debnath, K., Debnath, P., Choudhury, S., Saha, A. K., & Majumdar, A. (2023). A framework of Trapezoidal Fuzzy Best-Worst Method in Location Selection for Surface Water Treatment Plant. Pollution, 9(3), 839–853. [Google Scholar]
  43. Feng, Z., Xu, C., Zuo, Y., Luo, X., Wang, L., Chen, H., ... & Liang, T. (2023). Analysis of water quality indexes and their relationships with vegetation using self-organizing map and geographically and temporally weighted regression. Environmental Research, 216, 114587. [CrossRef] [Google Scholar]
  44. El Bilali, A., Taleb, A., & Brouziyne, Y. (2021). Groundwater quality forecasting using machine learning algorithms for irrigation purposes. Agricultural Water Management, 245, 106625. [CrossRef] [Google Scholar]
  45. Ernest, A., & Isaac, D. (2021). Geospatial analysis of groundwater quality using GIS: A case study of Ahafo Kenyasi, Ghana. South African Journal of Geomatics, 10(1), 32–45. [Google Scholar]
  46. Das, A. (2022). Multivariate statistical approach for the assessment of water quality of Mahanadi basin, Odisha. Materials Today: Proceedings, 65, A1–A11. [CrossRef] [Google Scholar]
  47. Das, A. (2023). Assessing Surface Water Quality for Drinking Water Supply using Hybrid GIS-Based Water Quality Index (WQI) in Mahanadi River Basin (MRB), Odisha, India. AIJR Proceedings, 1–21. [Google Scholar]
  48. Das, A. (2023). Assessment of potability of surface water and its health implication in Mahanadi Basin, Odisha. Materials Today: Proceedings. [Google Scholar]
  49. Ahsan, A., Ahmed, T., Uddin, M. A., Al-Sulttani, A. O., Shafiquzzaman, M., Islam, M. R., ... & Masria, A. (2023). Evaluation of water quality index (WQI) in and around Dhaka city using groundwater quality parameters. Water, 15(14), 2666. [Google Scholar]
  50. Zolghadr, M., Zomorodian, S. M. A., Fathi, A., Tripathi, R. P., Jafari, N., Mehta, D., ... & Azamathulla, H. M. (2023). Experimental study on the optimum installation depth and dimensions of roughening elements on abutment as scour countermeasures. Fluids, 8(6), 175. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.