Open Access
MATEC Web of Conf.
Volume 399, 2024
2024 3rd International Conference on Advanced Electronics, Electrical and Green Energy (AEEGE 2024)
Article Number 00005
Number of page(s) 22
Published online 24 June 2024
  1. Zhang Z Q, Xiao Y, Ma Z, et al. 6G wireless networks: vision, requirements, architecture, and key technologies. IEEE Veh Technol Mag, 2019, 14: 28–41 [Google Scholar]
  2. development 2030 white paper.2022 [ development 2030 white paper.2022] https://www-file.huawei. [Google Scholar]
  3. com/-/media/corp2020/pdf/giv/industry-reports/green development 2030 cn 0427.pdf [Google Scholar]
  4. ZTE. The Green 5G Core Network White Paper.2023 [ZTE. Green 5G Core Network White Paper.2023 2023] paper/ZTE Green 5G Core White Paper CN1.pdf [Google Scholar]
  5. China mobile. China mobile peak carbon dioxide emissions carbon neutralization action plan white paper.2022 [in] [Google Scholar]
  6. China Mobile. China Mobile peak carbon dioxide emissions Carbon Neutralization Action Plan White Paper. 2022] https:// [Google Scholar]
  7. Chinaunicom.chinaunicom 5G intelligent energy saving technology white paper.2022 [China Unicom. China Unicom 5g intelligent energy saving technology white paper.2022 2022] [Google Scholar]
  8. China Telecom. China Telecom Group Carbon Peaking White Paper.2022 [China Telecom. China Telecom peak carbon dioxide emissions Action White Paper.2022 2022] [Google Scholar]
  9. IMT-2030 (6G) Promotion Group. IMT-6g Overall Vision and Potential Key Technologies White Paper.2021 [IMT-2030 (6g) Promotion Group.6g Overall Vision and Potential Key Technologies White Paper.2021] [Google Scholar]
  10. 5G Evolution Academic Exchange Forum. Key technology vision of energy saving and emission reduction for 5G-A/ 6g Wireless Communication System.2022 [5G Evolution Academic Exchange Forum. White Paper on Key Technology Vision of Energy Saving and Emission Reduction for 5G-A/6G Wireless Communication System.2022] 022/whitepaper [Google Scholar]
  11. ATIS. Green G white paper: the path toward sustainable 6G. 2022. [Google Scholar]
  12. Hexa-X. Designing the 6G networks of the future white paper. 2020. [Google Scholar]
  13. ITU. IMT towards 2030 and beyond white paper. 2023. https://” imt-2030/Pages/default.aspx [Google Scholar]
  14. ETSI. The fifth generation fixed network white paper: bringing fibre to everywhere and everything. 2020. https://”” wp 41 FSG ed1. [Google Scholar]
  15. Qualcomm. The future of AI is hybrid white paper. 2023. h” ten [Google Scholar]
  16. -device-and-hybrid-AI. [Google Scholar]
  17. Ericsson. 6G spectrum white paper: enabling the future mobile life beyond. 2023. https:// files/2023/05/6g -spectrum.pdf [Google Scholar]
  18. Lin Y, Shao L, Zhu Z, et al. Wireless network cloud: architecture and system requirements. IBM J Res Dev, 2010, 54: 1–12 [CrossRef] [Google Scholar]
  19. China Mobile Communication Research Institute. C-RAN white paper: towards 5G CRAN: requirements, Architecture and Challenges.2016 [China Mobile Communications Research Institute. C-RAN White Paper: Towards 5G C-RAN: Requirements, Architecture and Challenges.2016] [Google Scholar]
  20. Zhu M, Gu J, Zeng X, et al. Delay-aware energy-saving strategies for BBU pool in C-RAN: modeling and optimization. IEEE Access, 2021, 9: 63257–63266 [Google Scholar]
  21. Zhou S, Zhao T, Niu Z S, et al. Software-defined hyper-cellular architecture for green and elastic wireless access. IEEE Commun Mag, 2016, 54: 12–19 [CrossRef] [Google Scholar]
  22. Niu Z S, Zhou S, Zhou S D, et al. Energy efficiency and resource optimized hyper-cellular mobile communication system architecture and its technical challenges. Sci Sin I Nform, 2012, 42: 1191–1203 [Niu Zhisheng, Zhou Sheng, Zhou Shidong, et al. New architecture of ultra-cellular mobile communication system with energy efficiency and resource optimization and its technical challenges. China Science: Information Science, 2012, 42: 1191–1203] [Google Scholar]
  23. Ngo H Q, Ashikhmin A, Yang H, et al. Cell-free massive MIMO versus small cells. IEEE Trans Wireless Commun, 2017, 16: 1834–1850 [Google Scholar]
  24. Wang D M, Zhang C, Du Y, et al. Implementation of a cloud-based cell-free distributed massive MIMO system. IEEE Commun Mag, 2020, 58: 61–67 [Google Scholar]
  25. Xia X J, Zhu P C, Li J M, et al. Joint user selection and transceiver design for cell-free with network-assisted full duplexing. IEEE Trans Wireless Commun, 2021, 20: 7856–7870 [Google Scholar]
  26. Zhang X Y, Li J D, Liu J Y, et al. Resource cell—wireless coverage structure for next-generation ultra-dense networks. Chin J Int Things, 2023, 7.1–17 [Zhang Xiayu, Li Jiandong, Liu Junyu, et al. Resource Community-Wireless Coverage Structure for Next Generation Ultra-dense Network. Journal of Internet of Things, 2023, 7: 1–17] [Google Scholar]
  27. Namba S, Warabino T, Kaneko S, et al. BBURRH switching schemes for centralized RAN. In: Proceedings of the 7th International Conference on Communications and Networking in China, 2012. 762–766 [Google Scholar]
  28. Guo X Y, Leng B J, Wu J, et al.Energy-delay tradeoff and optimal base station sleeping control in hyper-cellular networks. Sci Sin Inform, 2017, 47: 771–788 [Angelar, Leng Bingjie, Wu Jian, et al. Theoretical relationship of energy efficiency delay in femtocell networks and optimal sleep control of base stations. China Science: Information Science, 2017, 47: 771–788] [Google Scholar]
  29. You X H, Wang D M, Wang J Z, et al. Distributed MIMO and Cell-Free Mobile Communication. Beijing: Science Press, 2019 [You Xiaohu, Wang Dongming, Wang Jiangzhou, et al. Distributed MIMO and Cellular-Free Mobile Communication. Beijing: Science Press, 2019]. [Google Scholar]
  30. Femenias G, Lassoued N, Riera-Palou F. Access point switch ON/OFF strategies for green cell-free massive MIMO networking. IEEE Access, 2020, 8: 21788–21803 [Google Scholar]
  31. He Y, Shen M, Wang R, et al. Energy-efficient sleep-mode based on deep reinforcement learning for cell-free mmWave massive MIMO systems. Acta Electron Sin, 2023, 51: 2831–2843 [He Yun, Shen Min, Cassie Wang, et al. Energy-saving sleep strategy based on deep reinforcement learning in cellular millimeter-wave large-scale MIMO system. Acta Electronica, 2023, 51: 2831–2843] [Google Scholar]
  32. Guan l, ding y, Li r j, et al. net work energy saving technologies for green 5G. telecommunsci, 2022, 38: 167–174 [Guan lei, Ding Yang, Li Ruijie, et al. 5g network energy-saving technology for “double carbon”. Telecommunication Science, 2022, 38: 167–174. [Google Scholar]
  33. Foukas X, Patounas G, Elmokashfi A, et al. Network slicing in 5G: survey and challenges. IEEE Commun Mag, 2017, 55: 94–100 [CrossRef] [Google Scholar]
  34. Wu Y L, Dai H N, Wang H Z, et al. A survey of intelligent network slicing management for industrial IoT: integrated approaches for smart transportation, smart energy, and smart factory. IEEE Commun Surv Tutorials, 2022, 24: 1175– 1211 [Google Scholar]
  35. Afolabi I, Taleb T, Samdanis K, et al. Network slicing and softwarization: a survey on principles, enabling technologies, and solutions. IEEE Commun Surv Tutorials, 2018, 20: 2429– 2453 [CrossRef] [Google Scholar]
  36. Chang D L, Ding Y F, Xie J Y, et al. The devil is in the channels: mutual-channel loss for fine-grained image [Google Scholar]
  37. classification. IEEE Trans Image Process, 2020, 29: 4683–4695 [Google Scholar]
  38. Mao B, Tang F, Fadlullah Z M, et al. An intelligent route computation approach based on real-time deep learning strategy for software defined communication systems. IEEE Trans Emerg Top Comput, 2021, 9: 1554–1565 [Google Scholar]
  39. Mao B, Tang F, Kawamoto Y, et al. AI models for green communications towards 6G. IEEE Commun Surv Tutorials, 2021, 24: 210–247 [Google Scholar]
  40. Gong S, Xie Y, Xu J, et al. Deep reinforcement learning for backscatter-aided data offloading in mobile edge computing. IEEE Network, 2020, 34: 106–113 [Google Scholar]
  41. Sharma S, Darak S J, Srivastava A, et al. Transfer reinforcement learning based framework for energy savings in cellular base station network. In: Proceedings of URSI Asia-Pacific Radio Science Conference (AP–RASC), New Delhi, 2019. 1–4 [Google Scholar]
  42. Xiao H Z, Zhao J, Pei Q Q, et al. Vehicle selection and resource optimization for federated learning in vehicular edge computing. IEEE Trans Intell Transp Syst, 2021, 23: 11073–11087 [Google Scholar]
  43. Fang C, Yu F, Huang T, et al. A survey of energy-efficient caching in information-centric networking. IEEE Commun Mag, 2014, 52: 122– 129 [CrossRef] [Google Scholar]
  44. Bastug E, Bennis M, Zeydan E, et al. Big data meets telcos: a proactive caching perspective. J Commun Netw, 2015, 17: 549–557 [CrossRef] [Google Scholar]
  45. Zahed M I A, Ahmad I, Habibi D, et al. A review on green caching strategies for next generation communication networks. IEEE Access, 2020, 8: 212709–212737 [Google Scholar]
  46. Li L, Zhao G, Blum R S. A survey of caching techniques in cellular networks: research issues and challenges in content placement and delivery strategies. IEEE Commun Surv Tutorials, 2018, 20: 1710–1732 [CrossRef] [Google Scholar]
  47. Liu D, Yang C. Energy efficiency of downlink networks with caching at base stations.IEEE J Sel Areas Commun, 2016, 34: 907–922 [Google Scholar]
  48. Xie R, Li Z, Huang T, et al. Energy-efficient joint content caching and small base station activation mechanism design in heterogeneous cellular networks. China Commun, 2017, 14: 70– 83 [Google Scholar]
  49. Zhou S, Gong J, Zhou Z Y, et al. GreenDelivery: proactive content caching and push with energy-harvesting-based small cells. IEEE Commun Mag, 2015, 53: 142–149 [CrossRef] [Google Scholar]
  50. Niu Z S, Zhou S, Sun Y X, et al. Green communication and networking for carbon-peaking and carbon-neutrality: challenges and solutions. J Commun, 2022,43: 1–14 [Niu Zhisheng, Zhou Sheng, Sun Yuxuan, et al. Green communication and network oriented to “double carbon” strategy: challenges and countermeasures. Journal of Communication, 2022,43: 1–14] [Google Scholar]
  51. Rao J B, Fapojuwo A O. A survey of energy efficient resource management techniques for multicell cellular networks. IEEE Commun Surv Tutorials, 2014, 16: 154–180 [CrossRef] [Google Scholar]
  52. Wang K, Yu J, Yu Y, et al. A survey on energy internet: architecture, approach, and emerging technologies. IEEE Syst J, 2018, 12: 2403–2416 [CrossRef] [Google Scholar]
  53. Marsan M A, Bucalo G, Caro A D, et al. Towards zero grid electricity networking: powering BSs with renewable energy sources. In: Proceedings of IEEE Wireless Communications and Networking Conference Workshops, 2013. 596–601 [Google Scholar]
  54. Jahid A, Hossain S. Dimensioning of zero grid electricity cellular networking with solar powered off-grid BS. In: Proceedings of International Co nference on Electrical and Electronic Engineering, 2017. 1–4 [Google Scholar]
  55. Li D, Saad W, Guvenc I, et al. Decentralized energy allocation for wireless networks with renewable energy powered base stations. IEEE Trans Commun, 2015, 63: 2126–2142 [CrossRef] [Google Scholar]
  56. Miozzo M, Giupponi L, Rossi M, et al. Switch-on/off policies for energy harvesting small cells through distributed Q-Learning. In: Proceedings of IEEE Wireless Communications and Networking Conference Workshops, 2017. 1–6 [Google Scholar]
  57. Zeng D Z, Zhang J, Guo S, et al. Take renewable energy into CRAN toward green wireless access networks. IEEE Network, 2017, 31: 62–68 [CrossRef] [Google Scholar]
  58. Hu R Q, Qian Y. An energy efficient and spectrum efficient wireless heterogeneous network framework for 5G systems. IEEE Commun Mag, 2014, 52: 94–101 [Google Scholar]
  59. Pompili D, Hajisami A, Tran T X. Elastic resource utilization framework for high capacity and energy efficiency in cloud RAN. IEEE Commun Mag, 2016, 54: 26–32 [Google Scholar]
  60. Lee H S, Kim D Y, Lee J W. Radio and energy resource management in renewable energy-powered wireless networks with deep reinforcement learning. IEEE Trans Wireless Commun, 2022, 21: 5435–5449 [Google Scholar]
  61. ZhangY, WangY. Aframework for energy efficient control in heterogeneous cloud radio access networks. In: Proceedings of IEEE International Conference on Communications in China, 2016. 1–5 [Google Scholar]
  62. Jeon S H, Lee J, Choi J K. A distributed power allocation scheme for base stations powered by retailers with heterogeneous renewable energy sources. ETRI J, 2016, 38: 746–756 [Google Scholar]
  63. Guo S, Zeng D Z, Gu L, et al. When green energy meets cloud radio access network: joint optimization towards brown energy minimization. Mobile Netw Appl, 2019, 24: 962–970 [CrossRef] [Google Scholar]
  64. Gkatzikis L, Iosifidis G, Koutsopoulos I, et al. Collaborative placement and sharing of storage resources in the smart grid. In: Proceedings of IEEE International Conference on Smart Grid Communications (SmartGridComm), Venice, 2014. 103–108 [Google Scholar]
  65. Zhang T, Zhu K, Wang J H. Energy-efficient mode selection and resource allocation for D2D-enabled heterogeneous networks: a deep reinforcement learning approach. IEEE Trans Wireless Commun, 2021, 20: 1175–1187 [Google Scholar]
  66. Zuo J, Zhang J, Yuen C, et al. Energy efficient user association for cloud radio access networks. IEEE Access, 2016, 4: 2429–2438 [CrossRef] [Google Scholar]
  67. Willkomm D, Machiraju S, Bolot J, et al. Primary user behavior in cellular networks and implications for dynamic spectrum access. IEEE Commun Mag, 2009, 47: 88–95 [CrossRef] [Google Scholar]
  68. Fletscher L A, Suarez L A, Grace D, et al. Energy-aware resource management in heterogeneous cellular networks with hybrid energy sources. IEEE Trans Netw Serv Manage, 2019, 16: 279–293 [Google Scholar]
  69. Han T, Ansari N. Powering mobile networks with green energy. IEEE Wireless Commun, 2014, 21: 90–96 [CrossRef] [Google Scholar]
  70. Farbod A, Todd T D. Resource allocation and outage control for solar-powered WLAN mesh networks. IEEE Trans Mobile Comput, 2007, 6: 960–970 [Google Scholar]
  71. Niyato D, Lu X, Wang P. Adaptive power management for wireless base stations in a smart grid environment. IEEE Wireless Commun, 2012, 19: 44–51 [CrossRef] [Google Scholar]
  72. Xu J, Duan L, Zhang R. Cost-aware green cellular networks with energy and communication cooperation. IEEE Commun Mag, 2015, 53: 257–263 [CrossRef] [Google Scholar]
  73. Xu B Y, Chen Y, Carri´on J R, et al. Energy-aware power control in energy cooperation aided millimeter wave cellular networks with renewable energy resources. IEEE Access, 2017, 5: 432–442 [Google Scholar]
  74. Li Y, Zhao X H, Liang H. Throughput maximization by deep reinforcement learning with energy cooperation for renewable ultradense IoT networks. IEEE Internet Things J, 2020, 7: 9091–9102 [Google Scholar]
  75. Han T, Huang X Q, Ansari N. Energy agile packet scheduling to leverage green energy for next generation cellular networks. In: Proceedings of IEEE International Conference on Communications (ICC), 2013. 3650–3654 [Google Scholar]
  76. Kim H, de Veciana G, Yang X, et al. Distributed α-optimal user association and cell load balancing in wireless networks. IEEE ACM Trans Networking, 2012, 20: 177–190 [CrossRef] [Google Scholar]
  77. Wang Y B, Chen S Z, Ji H, et al. Load-aware dynamic biasing cell association in small cell networks. In: Proceedings of IEEE International Conference on Communications (ICC), Sydney, 2014. 2684–2689 [Google Scholar]
  78. Feng J, Yin X, Meng X, et al. Energy-aware resource allocation with energy harvesting in heterogeneous wireless network. In: Proceedings of International Symposium on Wirele ss Communications Systems (ISWCS), Barcelona, 2014. 766–770 [Google Scholar]
  79. Ke H C, Wang J, Wang H, et al. Joint optimization of data offloading and resource allocation with renewable energy aware for IoT devices: a deep reinforcement learning approach. IEEE Access, 2019, 7: 179349–179363 [CrossRef] [Google Scholar]
  80. Li Y Z, Sheng M, Sun Y H, et al. Joint optimization of BS operation, user association, subcarrier assignment, and power allocation for energy-efficient HetNets. IEEE J Sel Areas Commun, 2016, 34: 3339–3353 [CrossRef] [Google Scholar]
  81. Gong J, Thompson J S, Zhou S, et al. Base station sleeping and resource allocation in renewable energy powered cellular networks. IEEE Trans Commun, 2014, 62: 3801–3813 [CrossRef] [Google Scholar]
  82. AlQerm I, Shihada B. Enhanced machine learning scheme for energy efficient resource allocation in 5G heterogeneous cloud radio access networks. In: Proceedings of IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Montreal, 2017. 1–7 [Google Scholar]
  83. Lee W, Lee K. Deep learning-based energy efficient resource allocation for underlay cognitive MISO interference channels. IEEE Trans Cogn Commun Netw, 2023, 9: 695–707 [Google Scholar]
  84. Li J, Zhang X, Zhang J X, et al. Deep reinforcement learning-based mobility-aware robust proactive resource allocation in heterogeneous networks. IEEE Trans Cogn Commun Netw, 2020, 6: 408–421 [Google Scholar]
  85. Khan M W, Li G J, Wang K Y, et al. Optimal control and communication strategies in multi-energy generation grid. IEEE Commun Surv Tutorials, 2023, 25: 2599–2653 [Google Scholar]
  86. Joung J, Ho C K, Adachi K, et al. A survey on power-amplifier-centric techniques for spectrum- and energy-efficient wireless communications. IEEE Commun Surv Tutorials, 2015, 17: 315– 333 [CrossRef] [Google Scholar]
  87. Lopez-Perez D, Domenico A D, Piovesan N, et al. A survey on 5G radio access network energy efficiency: massive MIMO, lean carrier design, sleep modes, and machine learning. IEEE Commun Surv Tutorials, 2022, 24: 653–6 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.