Open Access
Issue
MATEC Web Conf.
Volume 398, 2024
2nd International Conference on Modern Technologies in Mechanical & Materials Engineering (MTME-2024)
Article Number 01040
Number of page(s) 19
DOI https://doi.org/10.1051/matecconf/202439801040
Published online 25 June 2024
  1. S. Ghosh, S. Mishra, T. Singh, Antisolvents in perovskite solar cells: importance, issues, and alternatives, Adv. Mater. Interfac. 7 (2020) 1–24, https://doi.org/10.1002/admi.202000950. [CrossRef] [Google Scholar]
  2. S. Mishra, S. Ghosh, T. Singh, Progress in materials development for flexible perovskite solar cells and future prospects, ChemSusChem 14 (2021) 512–538, https://doi.org/10.1002/cssc.202002095. [CrossRef] [Google Scholar]
  3. H. Dixit, B. Boro, S. Ghosh, M. Paul, A. Kumar, T. Singh, Assessment of lead freetin halide perovskite solar cells using J-V hysteresis, Phys. Status Solidi. (2022) [Google Scholar]
  4. A. Kotta, I. Seo, H.-S. Shin, H.-K. Seo, Room-temperature processed hole-transport layer in flexible inverted perovskite solar cell module, Chem. Eng. J. (2022), 134805. [CrossRef] [Google Scholar]
  5. E. von Hauff, D. Klotz, Impedance spectroscopy for perovskite solar cells: characterisation, analysis, and diagnosis, J. Mater. Chem. C. 10 (2022) 742–761. [CrossRef] [Google Scholar]
  6. L. Gu, C. Ran, L. Chao, Y. Bao, W. Hui, Y. Wang, Y. Chen, X. Gao, L. Song, Designing ionic liquids as the solvent for efficient and stable perovskite solar cells, ACS Appl. Mater. Interfaces (2022). [Google Scholar]
  7. Z. Zhu, Y. Bai, T. Zhang, Z. Liu, X. Long, Z. Wei, Z. Wang, L. Zhang, J. Wang, F. Yan, S. Yang, High-performance hole-extraction layer of sol-gel-processed NiO nanocrystals for inverted planar perovskite solar cells, Angew. Chem. 126 (2014) 12779–12783, https://doi.org/10.1002/ange.201405176. [CrossRef] [Google Scholar]
  8. J. Kim, G. Kim, T.K. Kim, S. Kwon, H. Back, J. Lee, S.H. Lee, H. Kang, K. Lee, Efficient planar-heterojunction perovskite solar cells achieved via interfacial modification of a sol-gel ZnO electron collection layer, J. Mater. Chem. A. 2 (2014) 17291–17296, https://doi.org/10.1039/c4ta03954h. [CrossRef] [Google Scholar]
  9. T. Singh, T. Miyasaka, Stabilizing the efficiency beyond 20% with a mixed cation perovskite solar cell fabricated in ambient air under controlled humidity, Adv. Energy Mater. 8 (2018), https://doi.org/10.1002/aenm.201700677. [CrossRef] [Google Scholar]
  10. T. Singh, J. Singh, T. Miyasaka, Role of metal oxide electron-transport layer modification on the stability of high performing perovskite solar cells, ChemSusChem 9 (2016) 2559–2566, https://doi.org/10.1002/cssc.201601004. [CrossRef] [Google Scholar]
  11. J. Jebakumar, D.J. Moni, D. Gracia, M.D. Shallet, Design and simulation of inorganic perovskite solar cell, Appl. Nanosci. (2022) 1–12. [Google Scholar]
  12. S.A. Moiz, Optimization of hole and electron transport layer for highly efficient lead-free Cs2TiBr6-based perovskite solar cell, in: Photonics, Multidisciplinary Digital Publishing Institute, 2022, p. 23. [Google Scholar]
  13. M.A. Shafi, H. Ullah, S. Ullah, L. Khan, S. Bibi, B.M. Soucase, Numerical simulation of lead-free Sn-based perovskite solar cell by using SCAPS-1D, Eng. Proc. 12 (2022) 92. [Google Scholar]
  14. W. Li, X. Gu, C. Shan, X. Lai, X.W. Sun, A.K.K. Kyaw, Efficient and stable mesoscopic perovskite solar cell in high humidity by localized Dion-Jacobson 2D3D heterostructures, Nano Energy 91 (2022), 106666. [CrossRef] [Google Scholar]
  15. L. Duan, A. Uddin, Defects and stability of perovskite solar cell: a critical analysis, Mater. Chem. Front. (2022). [Google Scholar]
  16. X. Zhu, C. Wang, C. Zhang, Z. Wang, J. Feng, S.F. Liu, D. Yang, Imidazoliumbased ionic liquid for stable and highly efficient black-phase formamidiniumbased perovskite solar cell, Chem. Eng. J. (2022), 134759. [CrossRef] [Google Scholar]
  17. Z. Song, A. Abate, S.C. Watthage, G.K. Liyanage, A.B. Phillips, U. Steiner, M. Graetzel, M.J. Heben, Perovskite solar cell stability in humid air: partially reversible phase transitions in the PbI2-CH3NH3I-H2O system, Adv. Energy Mater. 6 (2016), 1600846. [CrossRef] [Google Scholar]
  18. F. Bella, G. Griffini, J.-P. Correa-Baena, G. Saracco, M. Gratzel, A. Hagfeldt, S. Turri, C. Gerbaldi, Improving efficiency and stability of perovskite solar cells with photocurable fluoropolymers, Science 354 (2016) 203˘206, 80−. [CrossRef] [PubMed] [Google Scholar]
  19. J. Briones, M.C. Guinto, C.M. Pelicano, Accelerated lattice constant prediction of perovskite materials (ABX3, A2BB’O6) using partial least squares and principal component regression methods, Mater. Lett. 298 (2021), 130040, https://doi.org/10.1016/j.matlet.2021.130040 [CrossRef] [Google Scholar]
  20. M. Nasir, M. Khan, E.G. Rini, S.A. Agbo, S. Sen, Exploring the role of Fe substitution on electronic, structural, and magnetic properties of La2NiMnO6 double perovskites, Appl. Phys. Mater. Sci. Process 127 (2021) 1–14, https://doi.org/10.1007/s00339-021-04361-8. [CrossRef] [Google Scholar]
  21. M. Nasir, A.K. Pathak, J. Kubik, D. Malaviya, V. Krupa, A. Dasgupta, S. Sen, Enhanced B-site cation ordering and improved magnetic properties: role of A-site Bi substitution in La2NiMnO6 double perovskites, J. Alloys Compd. 896 (2022), 162713, https://doi.org/10.1016/j.jallcom.2021.162713. [CrossRef] [Google Scholar]
  22. M. Qu, X. Ding, Z. Shen, M. Cui, F.E. Oropeza, G. Gorni, V.A. De La Pena-O’Shea, W. Li, D.C. Qi, K.H.L. Zhang, Tailoring the electronic structures of the La2NiMnO6Double perovskite as efficient bifunctional oxygen electrocatalysis, Chem. Mater. 33 (2021) 2062–2071, https://doi.org/10.1021/acs.chemmater.0c04527. [CrossRef] [Google Scholar]
  23. A. Hossain, A.K.M. Atique Ullah, P. Sarathi Guin, S. Roy, An overview of La2NiMnO6 double perovskites: synthesis, structure, properties, and applications, J. Sol. Gel Sci. Technol. 93 (2020) 479–494, https://doi.org/10.1007/s10971-019-05054-8. [CrossRef] [Google Scholar]
  24. C. Li, B. Liu, Y. He, C. Lv, H. He, Y. Xu, Preparation, characterization and dielectric tunability of La 2NiMnO6 ceramics, J. Alloys Compd. 590 (2014) 541–545, https://doi.org/10.1016/j.jallcom.2013.12.170. [CrossRef] [Google Scholar]
  25. A. Kulkarni, T. Singh, M. Ikegami, T. Miyasaka, Photovoltaic enhancement of bismuth halide hybrid perovskite by N-methyl pyrrolidone-assisted morphology conversion, RSC Adv. 7 (2017) 9456–9460. [CrossRef] [Google Scholar]
  26. K. Yi, Q. Tang, Z. Wu, X. Zhu, Unraveling the structural, dielectric, magnetic, and optical characteristics of nanostructured La2NiMnO6 double perovskites, Nanomaterials 12 (2022) 979. [CrossRef] [Google Scholar]
  27. J. Thiesbrummel, V.M. Le Corre, F. Pena-Camargo, L. Perdigon-Toro, F. Lang, F. Yang, M. Grischek, E. Gutierrez-Partida, J. Warby, M.D. Farrar, Universal current losses in perovskite solar cells due to mobile ions, Adv. Energy Mater. 11 (2021), 2101447. [CrossRef] [Google Scholar]
  28. C. Chen, S. Zheng, H. Song, Photon management to reduce energy loss in perovskite solar cells, Chem. Soc. Rev. 50 (2021) 7250–7329. [CrossRef] [Google Scholar]
  29. P. Chen, Y. Bai, L. Wang, Minimizing voltage losses in perovskite solar cells, Small Struct 2 (2021), 2000050. [Google Scholar]
  30. D. Luo, R. Su, W. Zhang, Q. Gong, R. Zhu, Minimizing non-radiative recombination losses in perovskite solar cells, Nat. Rev. Mater. 5 (2020) 44–60. [Google Scholar]
  31. Z. Zhang, H. Jian, X. Tang, J. Yang, X. Zhu, Y. Sun, Synthesis and characterization of ordered and disordered polycrystalline La2NiMnO6 thin films by sol-gel, Dalton Trans. 41 (2012) 11836–11840, https://doi.org/10.1039/c2dt31214j. [CrossRef] [Google Scholar]
  32. C. Lan, S. Zhao, T. Xu, J. Ma, S. Hayase, T. Ma, Investigation on structures, band gaps, and electronic structures of lead free La2NiMnO6 double perovskite materials for potential application of solar cell, J. Alloys Compd. 655 (2016) 208–214, https://doi.org/10.1016/j.jallcom.2015.09.187. [CrossRef] [Google Scholar]
  33. M. Sariful Sheikh, D. Ghosh, A. Dutta, S. Bhattacharyya, T.P. Sinha, Lead free double perovskite oxides Ln2NiMnO6 (Ln = La, Eu, Dy, Lu), a new promising material for photovoltaic application, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 226 (2017) 10–17, https://doi.org/10.1016/j.mseb.2017.08.027. [CrossRef] [Google Scholar]
  34. M.S. Sheikh, A.P. Sakhya, A. Dutta, T.P. Sinha, Origin of narrow band gap and optical anisotropy in solar cell absorbers L 2 NiMnO 6 (L = La, Eu): a comparative DFT study, Comput. Mater. Sci. 161 (2019) 293–299, https://doi.org/10.1016/j.commatsci.2019.02.008. [CrossRef] [Google Scholar]
  35. M. Kumar, A. Raj, A. Kumar, A. Anshul, Effect of band-gap tuning on lead-free double perovskite heterostructure devices for photovoltaic applications via SCAPS simulation, Mater. Today Commun. 26 (2021), 101851 [CrossRef] [Google Scholar]
  36. M. Kumar, A. Raj, A. Kumar, A. Anshul, Theoretical evidence of high power conversion efficiency in double perovskite solar cell device, Opt. Mater. 111 (2021), 110565, https://doi.org/10.1016/j.optmat.2020.110565. [CrossRef] [Google Scholar]
  37. D. Pal, S. Das, Defect and interface engineering of highly efficient La2NiMnO6 planar perovskite solar cell: a theoretical study, Opt. Mater. 108 (2020), 110453, https://doi.org/10.1016/j.optmat.2020.110453. [CrossRef] [Google Scholar]
  38. F. Jafari, B.R. Patil, F. Mohtaram, A.L.F. Cauduro, H.G. Rubahn, A. Behjat, M. Madsen, Inverted organic solar cells with non-clustering bathocuproine (BCP) cathode interlayers obtained by fullerene doping, Sci. Rep. 9 (2019) 1–8, https://doi.org/10.1038/s41598-01946854-w. [CrossRef] [Google Scholar]
  39. Z. Yu, Z. Yang, Z. Ni, Y. Shao, B. Chen, Y. Lin, H. Wei, Z.J. Yu, Z. Holman, J. Huang, Simplified interconnection structure based on C60/SnO2-x for all-perovskite tandem solar cells, Nat. Energy 5 (2020) 657–665, https://doi.org/10.1038/s41560-020-0657-y. [CrossRef] [Google Scholar]
  40. Z. Ying, X. Yang, J. Zheng, Y. Zhu, J. Xiu, W. Chen, C. Shou, J. Sheng, Y. Zeng, B. Yan, H. Pan, J. Ye, and Z. He, Charge-transfer-induced multifunctional BCP:Ag complexes for semi-transparent perovskite solar cells with a record fill factor of 80.1, J. Mater. Chem. A. 9 (2021), 12009–12018, https://doi.org/10.1039/d1ta01180d. [CrossRef] [Google Scholar]
  41. J. Lee, S. Park, Y. Lee, H. Kim, D. Shin, J. Jeong, K. Jeong, S.W. Cho, H. Lee, Y. Yi, Electron transport mechanism of bathocuproine exciton blocking layer in organic photovoltaics, Phys. Chem. Chem. Phys. 18 (2016) 5444–5452, https://doi.org/10.1039/c5cp07099f. [CrossRef] [Google Scholar]
  42. J. Li, Y. Gu, Z. Han, J. Liu, Y. Zou, X. Xu, Further advancement of perovskite single crystals, J. Phys. Chem. Lett. 13 (2022), 274–290, https://doi.org/10.1021/acs.jpclett.1c03624. [CrossRef] [Google Scholar]
  43. X. Yin, P. Chen, M. Que, Y. Xing, W. Que, C. Niu, J. Shao, Highly efficient and flexible perovskite solar cells using solution-derived NiO x-hole contacts, ACS Nano 10 (2016) 3630–3636. [CrossRef] [Google Scholar]
  44. Z. Zhu, Y. Bai, T. Zhang, Z. Liu, X. Long, Z. Wei, Z. Wang, L. Zhang, J. Wang, F. Yan, High-performance hole-extraction layer of sol-gel-processed NiO nanocrystals for inverted planar perovskite solar cells, Angew. Chem. 126 (2014) 12779–12783. [CrossRef] [Google Scholar]
  45. L. Xu, X. Chen, J. Jin, W. Liu, B. Dong, X. Bai, H. Song, P. Reiss, Inverted perovskite solar cells employing doped NiO hole transport layers: a review, Nano Energy 63 (2019), 103860. [CrossRef] [Google Scholar]
  46. Kozlov S.S., et al. Nanosystems: Phys. Chem. Math., 2023, 14 (5), 584–589. http://nanojournal.ifmo.ru DOI 10.17586/2220-8054-2023-14-5-584-589 [CrossRef] [Google Scholar]
  47. Ashwini Singh et al, Enhancing the performance of lead-freeLa2NiMnO6 double perovskite solar cells through SCAPS-1D optimization [Google Scholar]
  48. M. Khalid Hossain et al, High−Efficiency Lead−Free La2NiMnO6−Based Double Perovskite Solar Cell by Incorporating Charge Transport Layers Composed of WS2, ZnO, and Cu2FeSnS4. Energy Fuels 2023, 37, 19898–19914 https://doi.org/10.1021/acs.energyfuels.3c04226 [CrossRef] [Google Scholar]
  49. Himanshu Dixit et al, A theoretical exploration of lead-free double perovskite La2NiMnO6 based solar cell via SCAPS-1D 0925−3467/ 2022 Elsevier https://doi.org/10.1016/j.optmat.2022.112611 [Google Scholar]
  50. S. D. Stranks and H. J. Snaith, Metal−halide perovskites for photovoltaic and light−emitting devices, Nat. Nanotechnol., 2015, 10(5), 391˘402, DOI: 10.1038/nnano.2015.90 Hossain, M. K.; Arnab, A. A.; Samajdar, D. P.; Rubel, M. H. K.; [CrossRef] [PubMed] [Google Scholar]
  51. Hossain, M. K.; Rubel, M. H. K.; Toki, G. F. I.; Alam, I.; Rahman, M. F.; Bencherif, H. Effect of Various Electron and Hole Transport Layers on the Performance of CsPbI3−Based Perovskite Solar Cells: A Numerical Investigation in DFT, SCAPS-1D, and WxAMPS Frameworks. ACS Omega 2022, 7 (47), 43210−43230. [CrossRef] [Google Scholar]
  52. Hossain, M. M.; Islam, M. R.; Das, R. C.; Bencherif, H.; Rahman, M. F.; Madan, J.; Pandey, R.; Bhattarai, S.; Amami, M.; Dwivedi, D. K. Design Insights into La2NiMnO6−Based Perovskite Solar Cells Employing Different Charge Transport Layers: DFT and SCAPS−1D Frameworks. Energy Fuels 2023, 37 (17), 13377−13396 [CrossRef] [Google Scholar]
  53. Heriche, H.; Rouabah, Z.; Bouarissa, N. New Ultra Thin CIGS Structure Solar Cells Using SCAPS Simulation Program. Int. J. Hydrogen Energy 2017, 42 (15), 9524−9532. [CrossRef] [Google Scholar]
  54. Jeon, N. J.; Noh, J. H.; Yang, W. S.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. Il. Com-positional Engineering of Perovskite Materials for High-Performance Solar Cells. Nature 2015, 517 (7535), 476−480. [CrossRef] [Google Scholar]
  55. Ahmmed, S.; Aktar, A.; Hossain, J.; Ismail, A. B. M. Enhancing the Open Circuit Voltage of the SnS Based Heterojunction Solar Cell Using NiO HTL. Sol. Energy 2020, 207, 693−702 [Google Scholar]
  56. Sunny, A.; Rahman, S.; Khatun, M. M.; Ahmed, S. R. Al. Numerical Study of High Performance HTL-Free CH3NH3S nI3-Based Perovskite Solar Cell by SCAPS-1D. AIP Adv. 2021, 11 (6), 065102. (86) Heriche, H.; Rouabah, Z.; Bouarissa, N. New Ultra Thin CIGS Structure Solar Cells Using SCAPS Simulation Program. Int. J. Hydrogen Energy 2017, 42 (15), 9524−9532. [Google Scholar]
  57. Al-Asbahi B A, Qaid S M H, Hezam M, Bedja I, Ghaithan H M and Aldwayyan A S 2020 Effect of deposition method on the structural and optical properties of CH3NH3PbI3 perovskite thin films Opt Mater (Amst). 103 109836 [Google Scholar]
  58. Akbulatov A F et al 2020 Film deposition techniques impact the defect density and photostability of MAPbI3 perovskite films The Journal of Physical Chemistry C. 124 21378–85 [Google Scholar]
  59. Samiul Islam M et al 2021 Defect study and modelling of SnX3−based perovskite solar cells with SCAPS−1D Nanomaterials. 11 1218 [Google Scholar]
  60. Montoya De Los Santos I et al 2020 Optimization of CH3NH3PbI3 perovskite solar cells: A theoretical and experimental study Sol. Energy 199 198–205 [Google Scholar]
  61. Abdelaziz S, Zekry A, Shaker A and Abouelatta M 2020 Investigating the performance of formamidinium tin-based perovskite solar cell by SCAPS device simulation Opt Mater (Amst). 101 109738 [Google Scholar]
  62. Zheng H et al 2021 Controlling the defect density of perovskite films by MXene/SnO2 hybrid electron transport layers for efficient and stable photovoltaics The Journal of Physical Chemistry C. 125 15210–22 [Google Scholar]
  63. Singh N, Agarwal A and Agarwal M 2020 Numerical simulation of highly efficient lead-free all-perovskite tandem solar cell Solar Energy[Internet]. 208 399–410 [Google Scholar]
  64. Shasti M and Mortezaali A 2019 Numerical study of Cu2O, SrCu2O2, and CuAlO2 as hole-transport materials for application in perovskite solar cells Physica Status Solidi (a). 216 1900337 [Google Scholar]
  65. Izadi F, Ghobadi A, Gharaati A, Minbashi M and Hajjiah A 2021 Effect of interface defects on high efficient perovskite solar cells Optik (Stuttg). 227 166061 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.