Open Access
Issue |
MATEC Web Conf.
Volume 398, 2024
2nd International Conference on Modern Technologies in Mechanical & Materials Engineering (MTME-2024)
|
|
---|---|---|
Article Number | 01012 | |
Number of page(s) | 19 | |
DOI | https://doi.org/10.1051/matecconf/202439801012 | |
Published online | 25 June 2024 |
- F. Venturi and R. Taylor, “Additive Manufacturing in the Context of Repeatability and Reliability,” Journal of Materials Engineering and Performance, vol. 32, no. 15. Springer, pp. 6589–6609, Aug. 01, 2023. doi: 10.1007/s11665-023-07897-3. [CrossRef] [Google Scholar]
- I. Fidan et al., “Recent Inventions in Additive Manufacturing: Holistic Review,” Inventions, vol. 8, no. 4. Multidisciplinary Digital Publishing Institute (MDPI), Aug. 01, 2023. doi: 10.3390/inventions8040103. [CrossRef] [Google Scholar]
- ASTM and ISO, “Additive manufacturing — General principles — Fundamentals and vocabulary.” ISO/ASTM, 2021. [Google Scholar]
- M. Palanisamy, A. Pugalendhi, and R. Ranganathan, “Selection of suitable additive manufacturing machine and materials through best–worst method (BWM),” International Journal of Advanced Manufacturing Technology, vol. 107, no. 5–6, pp. 2345–2362, Mar. 2020, doi: 10.1007/s00170-020-05110-6. [CrossRef] [Google Scholar]
- I. Gibson, D. Rosen, B. Stucker, and M. Khorasani, Additive Manufacturing Technologies. 2021. [Google Scholar]
- C. D. Patel and C.-H. Chen, Digital Manufacturing The Industrialization of “Art to Part” 3D Additive Printing. 2022. [Google Scholar]
- A. H. Alami et al., “Additive manufacturing in the aerospace and automotive industries: Recent trends and role in achieving sustainable development goals,” Ain Shams Engineering Journal, vol. 14, no. 11. Ain Shams University, Nov. 01, 2023. doi: 10.1016/j.asej.2023.102516. [CrossRef] [Google Scholar]
- A. K. Malaga, R. Agrawal, and V. A. Wankhede, “Material selection for metal additive manufacturing process,” Mater Today Proc, vol. 66, pp. 1744–1749, Jan. 2022, doi: 10.1016/j.matpr.2022.05.272. [CrossRef] [Google Scholar]
- S. Yadav, V. Kumar Pathak, and S. Gangwar, “A novel hybrid TOPSIS-PSI approach for material selection in marine applications,” Sådhanå, Feb. 2019. [Google Scholar]
- P. Chatterjee, A. Banerjee, S. Mondal, S. Boral, and S. Chakraborty, “Research Paper Development of a Hybrid Meta-Model for Material Selection Using Design of Experiments and EDAS Method,” 2018. [Google Scholar]
- A. Siva Bhaskar and A. Khan, “Comparative analysis of hybrid MCDM methods in material selection for dental applications,” Expert Syst Appl, vol. 209, Dec. 2022, doi: 10.1016/j.eswa.2022.118268. [CrossRef] [Google Scholar]
- M. Abas, T. Habib, S. Noor, D. Zimon, and J. Woźniak, “Application of multi-criteria decision-making methods in the selection of additive manufacturing materials for solid ankle foot orthoses,” Journal of Engineering Design, vol. 34, no. 8, pp. 616–643, 2023, doi: 10.1080/09544828.2023.2247859. [CrossRef] [Google Scholar]
- W. Liu, Z. Zhu, and S. Ye, “A decision-making methodology integrated in product design for additive manufacturing process selection,” Rapid Prototyp J, vol. 26, no. 5, pp. 895–909, May 2020, doi: 10.1108/RPJ-06-2019-0174. [CrossRef] [Google Scholar]
- A. Armillotta, “Selection of layered manufacturing techniques by an adaptive AHP decision model,” Robot Comput Integr Manuf, vol. 24, no. 3, pp. 450–461, Jun. 2008, doi: 10.1016/j.rcim.2007.06.001. [CrossRef] [Google Scholar]
- C. Author, A. Professor, and M. Eng, “SELECTION OF RAPID PROTOTYPING TECHNOLOGY,” Advances in Production Engineering & Management, vol. 5, pp. 75–84, 2010. [Google Scholar]
- C. G. Mançanares, E. de S. Zancul, J. Cavalcante da Silva, and P. A. Cauchick Miguel, “Additive manufacturing process selection based on parts’ selection criteria,” International Journal of Advanced Manufacturing Technology, vol. 80, no. 5–8, pp. 1007–1014, Sep. 2015, doi: 10.1007/s00170-015-7092-4. [CrossRef] [Google Scholar]
- M. Alghamdy, R. Ahmad, and B. Alsayyed, “Material selection methodology for additive manufacturing applications,” in Procedia CIRP, Elsevier B.V., 2019, pp. 486–490. doi: 10.1016/j.procir.2019.04.265. [CrossRef] [Google Scholar]
- U. K. uz Zaman, M. Rivette, A. Siadat, and S. M. Mousavi, “Integrated product-process design: Material and manufacturing process selection for additive manufacturing using multi-criteria decision making,” Robot Comput Integr Manuf, vol. 51, pp. 169–180, Jun. 2018, doi: 10.1016/j.rcim.2017.12.005. [CrossRef] [Google Scholar]
- S. Kadkhoda-Ahmadi, A. Hassan, and E. Asadollahi-Yazdi, “Process and resource selection methodology in design for additive manufacturing,” International Journal of Advanced Manufacturing Technology, vol. 104, no. 5–8, pp. 2013–2029, Oct. 2019, doi: 10.1007/s00170-019-03991-w. [CrossRef] [Google Scholar]
- M. T. Mastura, R. Nadlene, R. Jumaidin, S. I. Abdul Kudus, M. R. Mansor, and H. M. S. Firdaus, “Concurrent Material Selection of Natural Fibre Filament for Fused Deposition Modeling Using Integration of Analytic Hierarchy Process/Analytic Network Process,” J Renew Mater, vol. 10, no. 5, pp. 1221–1238, 2022, doi: 10.32604/jrm.2022.018082. [CrossRef] [Google Scholar]
- H. Taherdoost and M. Madanchian, “Multi-Criteria Decision Making (MCDM) Methods and Concepts,” Encyclopedia, vol. 3, no. 1, pp. 77–87, Jan. 2023, doi: 10.3390/encyclopedia3010006. [CrossRef] [Google Scholar]
- S. Zakeri, P. Chatterjee, D. Konstantas, and F. Ecer, “A decision analysis model for material selection using simple ranking process,” Sci Rep, vol. 13, no. 1, Dec. 2023, doi: 10.1038/s41598-023-35405-z. [Google Scholar]
- U. Khaleeq uz Zaman, A. Siadat, M. Rivette, A. A. Baqai, and L. Qiao, “Integrated product-process design to suggest appropriate manufacturing technology: a review,” International Journal of Advanced Manufacturing Technology, vol. 91, no. 1–4. Springer London, pp. 1409–1430, Jul. 01, 2017. doi: 10.1007/s00170-016-9765-z. [CrossRef] [Google Scholar]
- V. Kek, S. Vinodh, P. Brajesh, and R. Muralidharan, “Rapid prototyping process selection using multi criteria decision making considering environmental criteria and its decision support system,” Rapid Prototyp J, vol. 22, no. 2, pp. 225–250, 2016, doi: 10.1108/RPJ-03-2014-0040. [CrossRef] [Google Scholar]
- H. S. Byun and K. H. Lee, “A decision support system for the selection of a rapid prototyping process using the modified TOPSIS method,” International Journal of Advanced Manufacturing Technology, vol. 26, no. 11–12, pp. 1338–1347, Nov. 2005, doi: 10.1007/s00170-004-2099-2. [CrossRef] [Google Scholar]
- S. Liao, M. J. Wu, C. Y. Huang, Y. S. Kao, and T. H. Lee, “Evaluating and enhancing three-dimensional printing service providers for rapid prototyping using the DEMATEL based network process and VIKOR,” Math Probl Eng, vol. 2014, 2014, doi: 10.1155/2014/349348. [Google Scholar]
- B. Vahdani, S. M. Mousavi, and R. Tavakkoli-Moghaddam, “Group decision making based on novel fuzzy modified TOPSIS method,” Appl Math Model, vol. 35, no. 9, pp. 4257–4269, Sep. 2011, doi: 10.1016/j.apm.2011.02.040. [CrossRef] [Google Scholar]
- S. Vinodh, S. Nagaraj, and J. Girubha, “Application of Fuzzy VIKOR for selection of rapid prototyping technologies in an agile environment,” Rapid Prototyp J, vol. 20, no. 6, pp. 523–532, Oct. 2014, doi: 10.1108/RPJ-07-2012-0060. [CrossRef] [Google Scholar]
- Y. Wang, R. Y. Zhong, and X. Xu, “A decision support system for additive manufacturing process selection using a hybrid multiple criteria decision-making method,” Rapid Prototyp J, vol. 24, no. 9, pp. 1544–1553, Nov. 2018, doi: 10.1108/RPJ-01-2018-0002. [CrossRef] [Google Scholar]
- Wohlers Associates, “Wohlers report 2020. 3D printing and additive manufacturing: global state of the industry,” Fort Collins, 2020. [Google Scholar]
- E. Sacco and S. K. Moon, “Additive manufacturing for space: status and promises,” International Journal of Advanced Manufacturing Technology, vol. 105, no. 10, pp. 4123–4146, Dec. 2019, doi: 10.1007/s00170-019-03786-z. [CrossRef] [Google Scholar]
- S. M. Zaharia et al., “Material Extrusion Additive Manufacturing of the Composite UAV Used for Search-and-Rescue Missions,” Drones, vol. 7, no. 10, Oct. 2023, doi: 10.3390/drones7100602. [CrossRef] [Google Scholar]
- M. F. Cruz and A. V. Borille, “Decision methods application to compare conventional manufacturing process with metal additive manufacturing process in the aerospace industry,” Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 39, no. 1, pp. 177–193, Jan. 2017, doi: 10.1007/s40430-016-0532-8. [CrossRef] [Google Scholar]
- H. Klippstein, A. Diaz De Cerio Sanchez, H. Hassanin, Y. Zweiri, and L. Seneviratne, “Fused Deposition Modeling for Unmanned Aerial Vehicles (UAVs): A Review,” Advanced Engineering Materials, vol. 20, no. 2. Wiley-VCH Verlag, Feb. 01, 2018. doi: 10.1002/adem.201700552. [Google Scholar]
- Aaron Pearson, “World’s first jet-powered, 3D printed UAV.” [Online]. Available: https://www.stratasys.com/en/resources/blog/aurora-uav-3d-printing/ [Google Scholar]
- A. H. Alami et al., “Additive manufacturing in the aerospace and automotive industries: Recent trends and role in achieving sustainable development goals,” Ain Shams Engineering Journal, vol. 14, no. 11. Ain Shams University, Nov. 01, 2023. doi: 10.1016/j.asej.2023.102516. [CrossRef] [Google Scholar]
- M. R. Hallowell and J. A. Gambatese, “Qualitative Research: Application of the Delphi Method to CEM Research,” J Constr Eng Manag, vol. 136, no. 1, pp. 99–107, Jan. 2010, doi: 10.1061/(asce)co.1943-7862.0000137. [CrossRef] [Google Scholar]
- T. L. Saaty, “Decision making with the analytic hierarchy process,” 2008. [Google Scholar]
- K. Goepel, “Implementation of an Online software tool for the Analytic Hierarchy Process (AHP-OS),” International Journal of the Analytic Hierarchy Process, vol. 10, no. 3, pp. 469–487, 2018, doi: 10.13033/ijahp.v10i3.590. [CrossRef] [Google Scholar]
- L. J. Tan, W. Zhu, and K. Zhou, “Recent Progress on Polymer Materials for Additive Manufacturing,” Advanced Functional Materials, vol. 30, no. 43. Wiley-VCH Verlag, Oct. 01, 2020. doi: 10.1002/adfm.202003062. [Google Scholar]
- J. M. Jafferson and D. Chatterjee, “A review on polymeric materials in additive manufacturing,” in Materials Today: Proceedings, Elsevier Ltd, 2021, pp. 1349–1365. doi: 10.1016/j.matpr.2021.02.485. [Google Scholar]
- D. Bourell et al., “Materials for additive manufacturing,” CIRP Ann Manuf Technol, vol. 66, no. 2, pp. 659–681, 2017, doi: 10.1016/j.cirp.2017.05.009. [CrossRef] [Google Scholar]
- G. Schiller, “Additive Manufacturing for Aerospace.” [Google Scholar]
- 3dxtech, “3D Materials.” [Online]. Available: https://www.3dxtech.com/products/ [Google Scholar]
- 3DX, “3D PRINTING MATERIALS.” [Online]. Available: https://3dx.ae/3d-printing-materials/ [Google Scholar]
- ANSYS Inc., “ANSYS GRANTA Selector 2024 R1.” Cambridge. [Google Scholar]
- P. Li, H. Qian, J. Wu, and J. Chen, “Sensitivity analysis of TOPSIS method in water quality assessment: I. Sensitivity to the parameter weights,” Environ Monit Assess, vol. 185, no. 3, pp. 2453–2461, 2013, doi: 10.1007/s10661-012-2723-9. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.