Open Access
MATEC Web Conf.
Volume 398, 2024
2nd International Conference on Modern Technologies in Mechanical & Materials Engineering (MTME-2024)
Article Number 01006
Number of page(s) 11
Published online 25 June 2024
  1. Y. J. Choo and M. C. Chang, “Commonly used types and recent development of ankle-foot orthosis: A narrative review,” in Healthcare, 2021, p. 1046. [CrossRef] [Google Scholar]
  2. K. H. Al-Waeli, R. Ramli, S. M. Haris, Z. B. Zulkoffli, and M. S. Amiri, “Offline ANN-PID controller tuning on a multi-joints lower limb exoskeleton for gait rehabilitation,” IEEE Access, vol. 9, pp. 107360–107374, 2021. [CrossRef] [Google Scholar]
  3. W. Huo, S. Mohammed, J. C. Moreno, and Y. Amirat, “Lower limb wearable robots for assistance and rehabilitation: A state of the art,” IEEE Syst. J., vol. 10, no. 3, pp. 1068–1081, 2014. [Google Scholar]
  4. V. V Kulkarni, V. A. Kulkarni, and R. Talele, “PID controller-based DC motor speed control,” Int. J. Recent Innov. Trends Comput. Commun., vol. 5, no. 9, pp. 35–38, 2017. [Google Scholar]
  5. M. S. Amiri, R. Ramli, M. A. A. Tarmizi, M. F. Ibrahim, and K. Danesh Narooei, “Simulation and control of a six degree of freedom lower limb exoskeleton,” J. Kejuruter, vol. 32, no. 2, pp. 197–204, 2020. [CrossRef] [Google Scholar]
  6. P. D. Phuoc, T. X. Tuy, and others, “Research control for ankle joint rehabilitation device,” J. Mech. Eng. Sci., vol. 16, no. 1, pp. 8743–8753, 2022. [CrossRef] [Google Scholar]
  7. D. P. Allen, R. Little, J. Laube, J. Warren, W. Voit, and R. D. Gregg, “Towards an ankle-foot orthosis powered by a dielectric elastomer actuator,” Mechatronics, vol. 76, p. 102551, 2021. [CrossRef] [Google Scholar]
  8. T. R. Dillingham, L. E. Pezzin, and A. D. Shore, “Reamputation, mortality, and health care costs among persons with dysvascular lower-limb amputations,” Arch. Phys. Med. Rehabil., vol. 86, no. 3, pp. 480–486, 2005. [CrossRef] [Google Scholar]
  9. D. A. Winter, “Energy generation and absorption at the ankle and knee during fast, natural, and slow cadences.,” Clin. Orthop. Relat. Res., vol. 175, pp. 147–154, 1983. [Google Scholar]
  10. T. Lee, I. Kim, and Y. S. Baek, “Design of a 2dof ankle exoskeleton with a polycentric structure and a bi-directional tendon-driven actuator controlled using a pid neural network,” in Actuators, 2021, p. 9. [Google Scholar]
  11. M. Moradnia, S. Pouladi, M. Aqib, and J.-H. Ryou, “Thermodynamic Analysis of Group-III-Nitride Alloying with Yttrium by Hybrid Chemical Vapor Deposition,” Nanomaterials, vol. 12, no. 22, p. 4053, 2022. [CrossRef] [Google Scholar]
  12. M. Aqib et al., “Design and implementation of shape-adaptive and multifunctional robotic gripper,” J. F. Robot., vol. 41, no. 1, pp. 162–178, 2024. [CrossRef] [Google Scholar]
  13. J. Liu, H. Fang, and J. Xu, “Online adaptive PID control for a multi-joint lower extremity exoskeleton system using improved particle swarm optimization,” Machines, vol. 10, no. 1, p. 21, 2021. [CrossRef] [Google Scholar]
  14. J. Wu, J. Gao, R. Song, R. Li, Y. Li, and L. Jiang, “The design and control of a 3DOF lower limb rehabilitation robot,” Mechatronics, vol. 33, pp. 13–22, 2016. [CrossRef] [Google Scholar]
  15. S. Gharatappeh, H. J. Asl, and J. Yoon, “Design of a novel Assist-As-Needed controller for gait rehabilitation using a cable-driven robot,” in 2016 13th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), 2016, pp. 342–347. [Google Scholar]
  16. S. K. Hasan and A. K. Dhingra, “An adaptive controller for human lower extremity exoskeleton robot,” Microsyst. Technol., vol. 27, no. 7, pp. 2829–2846, 2021. [CrossRef] [Google Scholar]
  17. M. Aqib, S. Pouladi, M. Moradnia, R. P. R. Kumar, N.-I. Kim, and J.-H. Ryou, “Strain accumulation and relaxation on crack formation in epitaxial AlN film on Si (111) substrate,” Appl. Phys. Lett., vol. 124, no. 4, 2024. [CrossRef] [Google Scholar]
  18. M. Arsalan, M. Tufail, S. G. Khan, and S. H. Shah, “Adaptive Learning Inertia Control of Lower Limb Exoskeleton Robot.,” in 2021 International Conference on Robotics and Automation in Industry (ICRAI), 2021, pp. 1–6. [Google Scholar]
  19. M. Arsalan, S. ur Rehaman, M. Umair, A. Imran, and G. Iqbal, “Feedback Linearization Control of Lower Limb Exoskeleton Robot for Rehabilitation,” in MATEC Web of Conferences, 2023, p. 1016. [Google Scholar]
  20. S. H. Shah, M. Arsalan, S. G. Khan, M. T. Khan, and M. S. Alam, “Design and compliance control of a robotic gripper for orange harvesting,” Proc. 22nd Int. Multitopic Conf. INMIC 2019, pp. 1–5, 2019, doi: 10.1109/INMIC48123.2019.9022758. [Google Scholar]
  21. S. H. Shah, M. S. Alam, M. Arsalan, I. ul Haq, S. G. Khan, and J. Iqbal, “Design and Adaptive Compliance Control of a Wearable Walk Assist Device,” in 2023 International Conference on Robotics and Automation in Industry (ICRAI), 2023, pp. 1–7. [Google Scholar]
  22. S. Masroor, M. Arsalan, S. G. Khan, S. H. Shah, M. S. Alam, and A. Imran, “Design and Control of a Bionic Leg,” in 2023 International Multi-disciplinary Conference in Emerging Research Trends (IMCERT), 2023, pp. 1–6. [Google Scholar]
  23.” [Google Scholar]
  24. M. W. Spong, J. De Schutter, H. Bruyninckx, and J. T.-Y. Wen, “Control of robots and manipulators,” in Control System Applications, CRC Press, 2018, pp. 165–193. [Google Scholar]
  25. I. N. Afiah, H. Nakashima, and S. Muraki, “Age-related changes in walking motion of Japanese females: basic analysis of gait motion,” 대한인간공학회 학술대회논문집, pp. 640–644, 2014. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.