Open Access
MATEC Web Conf.
Volume 397, 2024
3rd International Conference on Civil Engineering and Construction Technology (ICECon2024)
Article Number 03004
Number of page(s) 15
Section Structures and Materials
Published online 28 May 2024
  1. Ministry of Transport Malaysia, Transport Statistics Malaysia 2021, Malaysia Transportation. 6–10 (2021). [Google Scholar]
  2. N. H. Zerin, M. G. Rasul, M. I. Jahirul, and A. S. M. Sayem, End-of-life tyre conversion to energy: A review on pyrolysis and activated carbon production processes and their challenges, Sci. Total Environ., 905, 166981 (2023). doi: 10.1016/j.scitotenv.2023.166981. [CrossRef] [Google Scholar]
  3. A. Mohajerani Lucas Burnett, John V. Smith, Stefan Markovski, Glen Rodwell, MdTareq Rahman, Halenur Kurmus, Mehdi Mirzababaei, Arul Arulrajah, Suksun Horpibulsuk, and Farshid Maghool, Recycling waste rubber tyres in construction materials and associated environmental considerations: A review, Resour. Conserv. Recycl., 155, 104679 (2020). doi: 10.1016/j.resconrec.2020.104679. [CrossRef] [Google Scholar]
  4. Ewan Scott, MATRDS Urges Government to Tackle Waste Tyre Issue, Tyre And Rubber Recycling, Nov. 14, 2022. [Online]. Available: [Google Scholar]
  5. S. Skinner, City Hall removes piles of used tyres from Inanam, Likas, Daily Express, May 23, 2023. [Online]. Available: [Google Scholar]
  6. A. N. S. Zainal Abidin, S. A. Mohd Faudzi, F. Lamin, and A. R. Abdul Manap, MIROS Crash Investigation and Reconstruction Annual Statistical Report 2007–2010 (2012). [Google Scholar]
  7. A. N. S. Zainal Abidin, Z. Mohd Jawi, D. W. Kak, C. Y. Tan, M. A. F. Abdul Wahab, M. R. Osman, A. Omar, And K. A. Abu Kassim, Motor-Vehicle Tyre Ecosystem in Malaysia A Status Review, J. Soc. Automot. Eng. Malaysia, 3, 298–313 (2021). doi: 10.56381/jsaem.v3i3.133. [CrossRef] [Google Scholar]
  8. D. Czarna-Juszkiewicz, P. Kunecki, J. Cader, and M. Wdowin, Review in Waste Tire Management—Potential Applications in Mitigating Environmental Pollution, Materials (Basel)., 16(17) (2023). doi: 10.3390/ma16175771. [CrossRef] [Google Scholar]
  9. S. Dabic-miletic, End-of-life tire management : a critical review, 68053–68070, (2021). [Google Scholar]
  10. European Union, Council Directive 1999/31/EC on the landfill, Off. J. Eur. Communities, no. 10, L182/1-19 (1999). doi: 10.1039/ap9842100196. [Google Scholar]
  11. Z. Xiao, A. Pramanik, A. K. Basak, C. Prakash, and S. Shankar, Material recovery and recycling of waste tyres-A review, Clean. Mater., 5, 100115 (2022). doi: 10.1016/j.clema.2022.100115. [CrossRef] [Google Scholar]
  12. K. Formela, Sustainable development of waste tires recycling technologies – recent advances, challenges and future trends, Adv. Ind. Eng. Polym. Res., 4, 209–222, (2021). doi: 10.1016/j.aiepr.2021.06.004. [Google Scholar]
  13. M. Sienkiewicz, J. Kucinska-Lipka, H. Janik, and A. Balas, Progress in used tyres management in the European Union: A review, Waste Manag., 32, 1742–1751 (2012). doi: 10.1016/j.wasman.2012.05.010. [Google Scholar]
  14. G. Ramos, F. J. Alguacil, and F. A. López, The recycling of end-of-life tyres. Technological review, 47, 273–284 (2011). doi: 10.3989/revmetalm.1052. [Google Scholar]
  15. L. Bockstal, T. Berchem, Q. Schmetz, and A. Richel, Devulcanisation and reclaiming of tires and rubber by physical and chemical processes: A review, J. Clean. Prod., 236, 117574 (2019). doi: 10.1016/j.jclepro.2019.07.049. [CrossRef] [Google Scholar]
  16. Chemsain Konsultant Sdn Bhd, A Study on Scrap Tyres Management for Peninsular Malaysia : Final Report (2011). [Google Scholar]
  17. K. Pilakoutas, K. Neocleous, and H. Tlemat, Reuse of tyre steel fibres as concrete reinforcement, Proc. Inst. Civ. Eng. Eng. Sustain., 157, 131–138 (2004). doi: 10.1680/ensu.2004.157.3.131. [Google Scholar]
  18. American Society for Testing and Materials, Standard Specification For Steel Fibers For Fiber-Reinforced concrete A 820/A 820M 04, ASTM Int., 3–6 (2004). [Google Scholar]
  19. T. Zhang, J. Cui, M. Chen, X. Feng, X. Jiang, and Q. Chen, Feasibility of utilising waste tyre steel fibres to develop sustainable engineered cementitious composites: Engineering properties, impact resistance and environmental assessment, J. Clean. Prod., 427 (2023). doi: 10.1016/j.jclepro.2023.139148. [Google Scholar]
  20. A. N. Kangu, S. M. Shitote, R. O. Onchiri, and M. Matallah, Effects of waste tyre steel fibres on the ultimate capacity of headed studs in normal concrete, Case Stud. Constr. Mater., 18, e02166 (2023). doi: 10.1016/j.cscm.2023.e02166. [Google Scholar]
  21. S. Senesavath, A. Salem, S. Kashkash, B. Zehra, and Z. Orban, The effect of recycled tyre steel fibers on the properties of concrete, Pollack Period., 17, 43–49 (2022). doi: 10.1556/606.2021.00388. [CrossRef] [Google Scholar]
  22. M. F. Smrkić, D. Damjanović, and A. Baričević, Primjena recikliranih čeličnih vlakana u betonskim elementima izloženima zamoru, Gradjevinar, 69, 893–905 (2017). doi: 10.14256/JCE.2059.2017. [Google Scholar]
  23. S. M. S. M. K. Samarakoon, P. Ruben, J. Wie Pedersen, and L. Evangelista, Mechanical performance of concrete made of steel fibers from tire waste, Case Stud. Constr. Mater., 11, e00259 (2019). doi: 10.1016/j.cscm.2019.e00259. [Google Scholar]
  24. O. Yavuz Bayraktar, G. Kaplan, J. Shi, A. Benli, B. Bodur, and M. Turkoglu, The effect of steel fiber aspect-ratio and content on the fresh, flexural, and mechanical performance of concrete made with recycled fine aggregate, Constr. Build. Mater., 368, 130497 (2023). doi: 10.1016/j.conbuildmat.2023.130497. [CrossRef] [Google Scholar]
  25. A. Antonova, M. Eik, V. Jokinen, and J. Puttonen, Effect of the roughness of steel fibre surface on its wettability and the cement paste close to fibre surface, Constr. Build. Mater., 289, 123139 (2021). doi: 10.1016/j.conbuildmat.2021.123139. [CrossRef] [Google Scholar]
  26. A. Michalik, F. Chyliński, A. Piekarczuk, and W. Pichór, Evaluation of recycled tyre steel fibres adhesion to cement matrix, J. Build. Eng., 68 (2023). doi: 10.1016/j.jobe.2023.106146. [Google Scholar]
  27. A. Le Hoang and E. Fehling, Influence of steel fiber content and aspect ratio on the uniaxial tensile and compressive behavior of ultra high performance concrete, Constr. Build. Mater., 153, 790–806 (2017). doi: 10.1016/j.conbuildmat.2017.07.130. [CrossRef] [Google Scholar]
  28. ACI-Committe, ACI 544.3 R-08 Guide for Specifying Proportioning, and Productionof Fiber-Reinforced Concrete, ACI American Concrete Institute, Am. Concr. Inst. (2008). [Google Scholar]
  29. N. Van Chanh, Steel Fiber Reinforced Concrete, Fac. Civ. Eng. Ho chi minh City Univ. Technol. Semin. Mater., 108–116 (2004). doi: 10.2472/jsms.25.937. [Google Scholar]
  30. Akhtar Gul, Bashir Alam, Muhammad Junaid Iqbal, Wisal Ahmed, Khan Shahzada, Muhammad Haris Javed, and Ezaz Ali Khan, Impact of length and percent dosage of recycled steel fibers on the mechanical properties of concrete, Civ. Eng. J., 7, 1650–1666 (2021). doi: 10.28991/cej-2021-03091750. [CrossRef] [Google Scholar]
  31. M. Chen, J. Sun, T. Zhang, Y. Shen, and M. Zhang, Enhancing the dynamic splitting tensile performance of ultra-high performance concrete using waste tyre steel fibres, J. Build. Eng., 80, 108102 (2023). doi: 10.1016/j.jobe.2023.108102. [CrossRef] [Google Scholar]
  32. S. Abdallah, D. W. A. Rees, S. H. Ghaffar, and M. Fan, Understanding the effects of hooked-end steel fibre geometry on the uniaxial tensile behaviour of self-compacting concrete, Constr. Build. Mater., 178, 484–494 (2018). doi: 10.1016/j.conbuildmat.2018.05.191. [CrossRef] [Google Scholar]
  33. A. Alrawashdeh and O. Eren, Mechanical and physical characterisation of steel fibre reinforced self-compacting concrete: Different aspect ratios and volume fractions of fibres, Results Eng., 13, 100335 (2022). doi: 10.1016/j.rineng.2022.100335. [CrossRef] [Google Scholar]
  34. Ö. Zeybek, Y. O. Özkılıç, A. İ. Çelik, A. F. Deifalla, M. Ahmad, and M. M. Sabri Sabri, Performance evaluation of fiber-reinforced concrete produced with steel fibers extracted from waste tire, Front. Mater., 9, 1–15 (2022). doi: 10.3389/fmats.2022.1057128. [CrossRef] [Google Scholar]
  35. M. A. Köroğlu, Behavior of composite self-compacting concrete (SCC) reinforced with steel wires from waste tires, Rev. la Constr., 17, 484–498 (2019). doi: 10.7764/RDLC.17.3.484. [Google Scholar]
  36. Y. Zhang and L. Gao, Influence of Tire-Recycled Steel Fibers on Strength and Flexural Behavior of Reinforced Concrete, Adv. Mater. Sci. Eng., 2020 (2020). doi: 10.1155/2020/6363105. [Google Scholar]
  37. D. Revuelta, P. Carballosa, J. L. García Calvo, and F. Pedrosa, Residual strength and drying behavior of concrete reinforced with recycled steel fiber from tires, Materials (Basel)., 14 (2021). doi: 10.3390/ma14206111. [CrossRef] [Google Scholar]
  38. S. S. Shapie and M. N. M. Taher, A review of steel fiber’s potential use in Hot Mix Asphalt, IOP Conf. Ser. Earth Environ. Sci., 1022 (2022). doi: 10.1088/17551315/1022/1/012024. [CrossRef] [Google Scholar]
  39. P. Park, S. El-Tawil, S. Y. Park, and A. E. Naaman, Cracking resistance of fiber reinforced asphalt concrete at -20 °c, Constr. Build. Mater., 81, 47–57 (2015). doi: 10.1016/j.conbuildmat.2015.02.005. [CrossRef] [Google Scholar]
  40. C. J. Slebi-Acevedo, P. Lastra-González, P. Pascual-Muñoz, and D. Castro-Fresno, Mechanical performance of fibers in hot mix asphalt: A review, Constr. Build. Mater., 200, 756–769 (2019). doi: 10.1016/j.conbuildmat.2018.12.171. [CrossRef] [Google Scholar]
  41. A. S. D. Al-ridha, A. N. Al-nuaimi, S. K. Ibrahim, and K. Ibrahim, Effect of steel Fiber on the Performance of Hot Mix Asphalt with Different Temperatures and Compaction Effect of steel Fiber on the Performance of Hot Mix Asphalt with Different Temperaturesand Compaction, no. April 2014. University of Ljubljana, Faculty of Mathematics and Physics (2020) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.