Open Access
MATEC Web Conf.
Volume 397, 2024
3rd International Conference on Civil Engineering and Construction Technology (ICECon2024)
Article Number 03005
Number of page(s) 10
Section Structures and Materials
Published online 28 May 2024
  1. World Economic Forum, Ellen MacArthur Foundation and McKinsey & Company, The New Plastics Economy: Rethinking the future of plastics (2016). [Google Scholar]
  2. Erkisi-Arici S., Hagen, J., Cerdas, F., & Herrmann, C. (2021). Comparative LCA of Municipal Solid Waste Collection and Sorting Schemes Considering Regional Variability. Procedia CIRP, 98, 235–240. [CrossRef] [Google Scholar]
  3. Chen, H. L., Nath, T. K., Chong, S., Foo, V., Gibbins, C., & Lechner, A. M. (2020). The Plastic Waste Problem in Malaysia: Management, Recycling and Disposal of Local and Global Plastic Waste. SN Applied Sciences, 3(4), 1–15. [Google Scholar]
  4. Kamaruddin M.A, M.M.A Abdullah, M.H Zawawi and M.R.R.A Zainol, 2017, Potential use of Plastic Waste as Construction Materials: Recent Progress and Future Prospect, IOP Conf. Ser.: Mater. Sci. Eng. 267 012011. [CrossRef] [Google Scholar]
  5. Gultah V. and Liew K.C., 2019. Morphomechanical properties of wood fiber plastic composites (WFPC) based on three different recycled plastic codes. Journal of Biobased Plastics, 1:1, 22–30 [CrossRef] [Google Scholar]
  6. Hassan, H.J.A., Rasul, J. & Samin, M. Effects of Plastic Waste Materials on Geotechnical Properties of Clayey Soil. Transp. Infrastruct. Geotech. 8, 390–413 (2021). [CrossRef] [Google Scholar]
  7. Manju R., Sathya S., Sheema K., 2017, Use of Plastic Waste in Bituminous Pavement, Int J of ChemTech Res, Vol.10 (8) 804–811, ISSN 2455-9555 [Google Scholar]
  8. Gungat L. and F. Anthony and A.K. Mirasa and H. Asrah and N. Bolong and N. A. Ispal and S. J. Matlan, 2021, Development of Paver Block Containing Recycled Plastic, IOP Conf. Ser.: Mater. Sci. Eng. 1144 012094, [CrossRef] [Google Scholar]
  9. Rosli, N.A., Ahmad, I. (2021). Mechanical Properties of Recycled Plastics. In: Parameswaranpillai, J., Mavinkere Rangappa, S., Gulihonnehalli Rajkumar, A., Siengchin, S. (eds) Recent Developments in Plastic Recycling. Composites Science and Technology. Springer, Singapore. [Google Scholar]
  10. Awoyera P.O. and Adesina, A, (2020), Plastic wastes to construction products: Status, limitations and future perspective, Case Studies in Construction Materials 12 (2020), [CrossRef] [Google Scholar]
  11. Hopewell J, Dvorak R., Kosior E., 2009, Plastic Recycling: challenges and opportunities. Philosphical Trans. Royal 364, 2115–2126. [CrossRef] [Google Scholar]
  12. Eriksen M.K. and Astup T.F. (2019), Characterization of source-separated, rigid plastic waste and evaluation of recycling initiatives: Effects of product design and sourceseparation system, Waste Management 87, 161–172 [Google Scholar]
  13. Singh N., Hui D., Singh R., Ahuja I., Feo L., Fraternali F., 2017, Recycling of plastic solid waste: A state of art review and future applications. Compos. Part B Eng. 2017;115:409–422. doi: 10.1016/j.compositesb.2016.09.013. [CrossRef] [Google Scholar]
  14. Kadhim L.F., 2017, Mechanical Properties of High Density Polyethylene/Chromium Trioxide under Ultraviolet Rays, Int. J of Applied Engineering Research ISSN 09734562 Vol.12, No. 10 (2017) pp. 2517–2526 [Google Scholar]
  15. Kim K.B, Chung D.S, Jang J.S., 2020, A Study of Product Design using Recycled Materials, Int. J. of Advanced Smart Convergence Vol.9 No.1 70–81 (2020) [Google Scholar]
  16. Asman N.S.A, M. B. Raymond and H. M. Mohamad and N. Bolong (2023) Life cycle assessment of plastic waste into furniture using open LCA software. Transactions on Science and Technology, 10 (2-2). pp. 88–94. ISSN 2289-8786. [Google Scholar]
  17. Sofiana Y, N. Wulandari, T. Indahyani, Actions for Sustainability: The implementation of Recycling Thermoplastics in Furniture Design for Painting Community in Jakarta, IOP Conf. Series: Earth and Environmental Science 998 (2022) 012033, doi:10.1088/1755-1315/998/1/012033 [CrossRef] [Google Scholar]
  18. Olesik P, Godzierz M, Kozioł M, Jała J, Szeluga U, Myalski J. Structure and Mechanical Properties of High-Density Polyethylene Composites Reinforced with Glassy Carbon. Materials (Basel). 2021 Jul 19;14(14):4024. doi: 10.3390/ma14144024. PMID: 34300942; PMCID: PMC8306466. [CrossRef] [Google Scholar]
  19. Zhou, H.; Wilkes, G.L. Orientation-dependent mechanical properties and deformation morphologies for uniaxially melt-extruded high-density polyethylene films having an initial stacked lamellar texture. J. Mater. Sci. 1998, 33, 287–303 [CrossRef] [Google Scholar]
  20. Amjadi M and Fatemi A., 2020, Tensile Behavior of High-Density Polyethylene Including the Effects of Processing Technique, Thickness, Temperature, and Strain Rate, Polymers 2020, 12, 1857; doi:10.3390/polym12091857 [Google Scholar]
  21. Tratzi, P., Giuliani, C., Torre, M., Tomassetti, L., Petrucci, R., Iannoni, A., Torre, L., Genova, S., Paolini, V., Petracchini, G D Carlo. 2021, Effect of Hard Plastic Waste on the Quality of Recycled Polypropylene Blends. Recycling 2021, 6, 58. [CrossRef] [Google Scholar]
  22. Gu F, P. Hall, N.J. Miles, 2016, Performance evaluation for composites based on recycled polypropylene using principal component analysis and cluster analysis, Journal of Cleaner Production, Vol. 115, 343–353, [CrossRef] [Google Scholar]
  23. Luijsterburg B., H. Goossens, 2014, Assessment of plastic packaging waste: Material origin, methods, properties, Resources, Conservation and Recycling, Vol. 85, 88–97, [CrossRef] [Google Scholar]
  24. MatWeb, 2022, MatWeb material database: Overview of material for HDPE, Injection molded, retrieved (August 2022) [Google Scholar]
  25. Stark, N.M., Matuana, L.M. and Clemons, C.M. (2004) Effect of Processing Method on Surface and Weathering Characteristics of Wood-Flour/HDPE Composites. Journal of Applied Polymer Science, 93, 1021–1030. [CrossRef] [Google Scholar]
  26. Yang H.S., M.P. Wolcott, H.S. Kim, S. Kim and H.J Kim, 2007, Effect of different compatibilizing agents on the mechanical properties of lignocellulosic material filled polyethylene bio-composites, (2007) Composite Structures, 79 (3), pp. 369–375. [CrossRef] [Google Scholar]
  27. Yang H.S., M.P. Wolcott, H.S. Kim, S. Kim and H.J Kim, 2007, Effect of different compatibilizing agents on the mechanical properties of lignocellulosic material filled polyethylene bio-composites, (2007) Composite Structures, 79 (3), pp. 369–375. [CrossRef] [Google Scholar]
  28. Hassan R., Syed Syazril Amri Syed Mubarat, Arizahyati Alisibramulisi. 2016, Young’s modulus and poison’s ratio of merapuh, kapur and sesenduk species, Jurnal Teknologi, 78, 29–33. [Google Scholar]
  29. Yuhazri, M., Jennise, T., Kamarul, A., Edeerozey, A., & Hussein, N. 2017. Preliminary Study on Water Absorption and Swelling for Plain and Honeycomb Rubber Wood. Journal of Advanced Manufacturing Technology (JAMT), 12(1(2), 173–182. Retrieved from [Google Scholar]
  30. Wan M., Chen J., Toppinen A., 2015, Consumers’ Environmental Perceptions of Children’s Furniture in China, Forest Products Journal (2015) 65 (7-8): 395–405. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.